Biopolymers and cell. Volume 20. 1-2. 71-76.


V. I. Danilov, V. M. Anisimov


The study of the canonical Watson-Crick DNA base pairs by Moller-Plesset perturbation method: the nature of their stability




Gas-phase gradient optimization was carried out on the canonical Watson-Crick DNA base pairs using the second-order Moller-Plesset (MP2) perturbation method at the 6-31G* and 6-31G*(0.25) basis sets. It is detected that full geometry optimization at the MP2 level leads to an intrinsically nonplanar propeller-twisted and buckled geometry of G-C and A-T base pairs. Morokuma-Kitaura (MK) and reduced variational space (RVS) methods of the decomposition for molecular Hartree-Fock interaction energies were used for the investigation of the hydrogen bonding in the Watson-Crick base pairs in question. It is shown that the stability of the hydrogen-bonded DNA base pairs originates mainly from electrostatic interactions. At the same time the polarization, charge transfer and dispersion interactions also make considerable contribution to the attraction energy of bases.