Aromatic thiosemicarbazones, their antiviral action and interferon. I. The decreasing of adenovirus type 1 resistance against interferon by methisazone in vitro

Yuriy V. Patskovsky*, Emma N. Negrebetskaya, Alexandra A. Chernomaz1, Tamara P. Voloshchuk, Eugeniy L. Rubashovsky, Oleg E. Kitam, Mikhail I. Tereshchenko, Lidiya N. Nosach1, Anatoliy I. Potopalsky

Institute of Molecular Biology and Genetics of the National Academy of Sciences of Ukraine
150 Zabolotnogo str., Kyiv 252143, Ukraine

1Zabolotnogo Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine
154 Zabolotnogo str., Kyiv 252143, Ukraine

Introduction. Methisazone (N-methyl-isatin-thiosemicarbazone, N-MeIBT, MeIBT) is a known antiviral drug studied earlier [1]. Izatizon is an original liquid form of MeIBT [2]. Both izatizon and MeIBT possess a large spectrum of antiviral action, but izatizon is more effective (20-100 times higher than MeIBT) and demonstrates no toxic effects in therapeutical doses. Izatizon has been shown as an antiviral agent against poxviruses, herpesviruses, enteroviruses, influenza viruses A and B, etc. After optimal schemes of drug application, 100 % curability was reported. So, the antiviral action of both MeIBT and izatizon in vitro is identical [2].

The methisazone directed mechanism of cell defence is not known. Earlier published data demonstrate that MeIBT reduces the late post-replicative protein synthesis in virus-infected cells [3—6]. In the presence of this compound, a disruption of polysomes in vaccinia virus-infected cells has been also observed [7]. However, MeIBT induced no effect on in vitro translation [8]. It inhibited different DNA- and RNA-viruses [9]. The antiviral effect has been observed by treating the adenovirus-infected cells with MeIBT during the early phase of
AROMATIC THIOSEMICYANATES, THEIR ANTIVIRAL ACTION

infection [10]. MelBT also showed a slight suppressive action on RNA-synthesis [8]. Early studies have not detected the target of methisazone action in virus-infected cells. The activity of MelBT against vaccinia virus was disappeared when cell transcription had been blocked by actinomycin D [4]. So, MelBT cannot provide antiviral action without cell transcription. Moreover, whereas the existence of MelBT-dependent and MelBT-resistant mutants of vaccinia virus has been also reported [11], it is likely some viral gene/protein are methisazone targets, the latter being cooperated with a cellular gene (or genes).

Here we demonstrate that MelBT is capable to reduce a viral defence against interferon antiviral action. Since MelBT does not inhibit the adenoviral infection without interferon, interferon is a cellular compound necessary for methisazone directed cell defense mechanism.

Materials and Methods. MelBT was synthesized as described previously (see [2]). To test its action, the compound was dissolved in dimethyl sulfoxide (or in mixture DMSO:PEG400, 1:3, v/v), stock concentration being 10—100 mM; it was added to culture medium after virus absorption at different final concentrations (0.001—50 mM). The final concentration of each solvent was not higher than 0.5 %. No toxic effects of solvents were observed up to 2 % concentration.

Cells (HeLa and HEp2) were grown in the minimal essential Eagle medium supplemented with 10 % fetal calf serum, 1.2 mM glutamine and 0.2 % sodium bicarbonate, and a mixture of penicillin-streptomycin (up to 100 units/ml:40 mg/l). The cells were infected with human adenoviruses—Ad H1 3H10 (Ad1) and Ad H2 (Ad2) with a moiety of infection 5 PFU per cell. After incubation at 37 °C, the Ad-infected cells were microscopically tested, washed by PBS, frozen at -70 °C and kept until further studies.

Interferon enzyme immunoassay. Polychlorovynil plates (Titertek Immuno Assay-Plate, «Flow Laboratory») were used. Polyclonal anti-IFN antibodies were obtained from Research Institute of Hyperpure Biopreparations (St. Petersburg, Russian Federation). They were dissolved (5 mg/ml) and absorbed on the plates in 0.1 M sodium carbonate-bicarbonate buffer, pH 9.6, during 24 h at 45 °C. Free binding sites were blocked by 0.1 % bovine serum albumin (BSA) in the same buffer (1 h, 37 °C). Standard IFN a2 (N. F. Gamaleya Epidemiology and Immunology Institute, Moscow) and tested probes were added in the PBST-BSA-0.1 buffer (solution containing 0.01 M K-phosphate, 0.15 M NaCl, 1 mM MgCl2, and 0.05 % Tween 20, 0.1 % BSA, pH 7.0, 100 ml, 1 h, 37 °C). Then the conjugate (at the dilution 1:400, 100 ml) was added, the probes being incubated 1 h at 37 °C. Finally, the fluorogenic substrate (0.01 % water solution of 4-methylumbellipheryl-β-D-galactoside, 100 ml) was added, and after 2 h (37 °C) the reaction was stopped by adding 0.1 M NaOH-glycine buffer, pH 10.3 (100 ml). The fluorescence of probes was measured using Hitachi-850 spectrophotometer (excitation 360 nm, emission 450 nm). After each step of incubation, microplates were washed 3 times by PBST buffer at room temperature. The conjugate of anti-IFN γ2 monoclonal antibodies with β-galactosidase was obtained according to protocol of Boehringer Mannheim Biochemica Co.

The viral protein immunoassay. The antiserum against Ad6 was obtained by intramuscular immunization of rabbits. The purification of the hexon Ad1 was provided by hydrophobic and ion exchange chromatography on the columns with butyl-toyopearl («Toyosoda») and DEAE-Trisacryl («Pharmacia»). The purified hexon Ad1 was used for the performance of calibration curve.

The sandwich ELISA modification in polystyrol plates («Linbro») was used. Monoclonal antibodies against hexon Ad1 were dissolved (10 mg/ml) and
absorbed on the plates as earlier (see upper). Then the plates were washed 3 times by PBST buffer and incubated in PBS (with 1 % BSA) (30 min, 37 °C). The cell lysates (1:10, 100 ml) in PBST buffer were added (1 h, 37 °C), the rabbit serum against Ad H6 (100 ml) was added and incubated (1 h, 37 °C). After washing, the HRP-conjugated goat antibodies against rabbit IgG (N. F. Gamaleya Epidemiology and Immunology Institute, Moscow) were diluted (1:100) and added (100 ml) too. After incubation during 1 h at 37 °C HPR activity was determined by adding of hydrogen peroxide (up to 0.015 %) and o-phenylenediamine (up to 0.4 mg/ml) in 0.1 M phosphate-citrate buffer, pH 5.0. The reaction was stopped by adding of 4 N H₂SO₄ (50 ml). The optical densities of probes are measured at 490 nm using Dynatech MR700 photometer.

DNA cloning. DNA Ad2 was extracted according to [12]. Ad2 DBP-containing fragment (nt 23767 to 24103/Sau3A sites/) was excised from pAdR4.3 plasmid constructed by cloning of EcoRI B-fragment (nt 21338 to 25633) from total Ad2 DNA in the EcoRI site of plasmid pUC19. Then the 336 bp DBP-fragment was cloned in the BamHI site of pUC19 (pDBP0.3).

To clone VAI RNA gene, the HindIII B-fragment (nt 6231 to 11555) Ad2 DNA was excised and cloned in the HindIII site of pUC19 (pAdH5.3). On the second stage, the AluI 548 bp fragment was extracted and cloned in the Smal site of pUC19 (pVAI548). On the third stage, the plasmid pVA224 was obtained (nt 10255/AluI site/ to 10479/XbaI site/) by removing XbaI-fragment from pVAI548.

To test E1A transcription, the synthetic oligonucleotide probe was synthesized (nt 831 to 853 of Ad2).

Hybridization procedures. RNA preparations from infected cells were extracted as described [13]. VAI RNA was purified according to O'Malley et al. [14]. The DNA probes were labelled by nick-translation Promega kit with α-32P-dCTP to a specific radioactivity of (1—5)-10^5 cpm/mg of DNA. Electrophoresis of the denatured RNA samples in 2 % agarose gels containing 2 % formaldehyde, blot-transfer to Hybond N membrane, DNA-DNA and DNA-RNA hybridization to the 32P-labelled DNA probes were performed as described previously [15]. Filters were dissected and radioactivity of hybridized probes was detected according to Cerencov program.

Results. The cytotoxicity of MelBT was usually observed with drug concentration above 40 mM. The lower concentrations were inhibiting for the viral protein synthesis in a dose-dependent manner as expected from earlier results [10]. The sensitivity of Ad1 to MelBT in vitro action was determined by immunoassay method. Our data concerning drugs have been shown no differences between MelBT and izatizon in vitro action. The decreasing of viral hexon synthesis was observed in MelBT-treated Ad1-infected HEp2 cells (Fig. 1, a). The recombinant human interferon α_2 (rIFN) did not damage hexon

Fig. 1. The level of hexon synthesis in Ad1-infected HEp2 cells (a) and HeLa cells (b) during virus growth cycle. MelBT (2.5 mM) and rIFN (1000 U/ml) were supplemented to the culture medium at 1 h p. i. Hexon assay were performed in the extracts of infected cells (10^6 cells in each variant) frozen at -70 °C. Values represent the mean of 3 determinations. 1 — Control; 2 — MelBT; 3 — MelBT + rIFN; 4 — rIFN.
AROMATIC THIOSEMICARBAZONES: THEIR ANTIVIRAL ACTION

Fig. 2. The expression of interferon α2 in Ad1-infected HEp2 cells. MelBT (2.5 mM) was supplemented to the culture medium at 1st h post infection; a — DNA-RNA dot-hybridization of total RNA of Ad1-infected cells (10^5 cells in each variant) was performed with nick-translated probe pIF226; b — interferon α2 was determined in culture media by immunofluorescence assay during virus growth cycle (1 — HEp2, control; 2 — HEp2, MelBT; 3 — HeLa, MelBT). Values represent the mean of 3 determinations.

Fig. 1. The expression of interferon α2 in Ad1-infected HeLa cells. MelBT (+ rIFN) was delayed until 8 h post infection (p. i.). Increasing amounts of viral hexon appeared when addition of the drug is delayed beyond this time (not shown). Since adenoviruses are not sensitive to interferon antiviral effects, it is likely the antiviral activity of MelBT is due to activation of both early viral functions and interferon expression.

In the absence of MelBT, Ad1 stimulated interferon expression in HEp2 cells beginning from the 2nd h p. i. (Fig. 2, a). The maximum of interferon synthesis was observed at the 5th h. Later the level of interferon increased, and the second maximum of interferon appeared at the 20-21th h p. i. After 40 h, the third maximum was also revealed. Existence of more than one maximum of interferon induction shows the possibility of virus reinfection beyond each virus growth cycle (16—18 h in our experiments). The infective process developed completely on the third day. Almost all the cells were infected and aggregated. On the contrary, Ad1 induced tenfold lower interferon titer in HeLa cells as compared to HEp2 ones (Fig. 2, b). The same results have been also obtained with HeLa S3 cells and Vero cells (data not shown). The drop of interferon expression correlates to the absence of MelBT antiviral action in virus-infected cells.

In the presence of MelBT, the level of interferon increased in the presence of rIFN. On the other hand, the level of hexon accumulation did not decrease in MelBT-treated Ad1-infected HeLa cells as compared to untreated culture (Fig. 1, b). The rIFN did not also inhibit the adenoviral infection in HeLa cells. However, in the presence of both MelBT and rIFN, the antiviral effect appeared again (Fig. 1, b). Hexon accumulation in adenovirus-infected cells was sharply inhibited when the addition of MelBT (+ rIFN) is delayed until 8 h post infection (p. i.). Increasing amounts of viral hexon appeared when addition of the drug is delayed beyond this time (not shown). Since adenoviruses are not sensitive to interferon antiviral effects, it is likely the antiviral activity of MelBT is due to activation of both early viral functions and interferon expression.

In the absence of MelBT, Ad1 stimulated interferon expression in HEp2 cells beginning from the 2nd h p. i. (Fig. 2, a). The maximum of interferon synthesis was observed at the 5th h. Later the level of interferon increased, and the second maximum of interferon appeared at the 20-21th h p. i. After 40 h, the third maximum was also revealed. Existence of more than one maximum of interferon induction shows the possibility of virus reinfection beyond each virus growth cycle (16—18 h in our experiments). The infective process developed completely on the third day. Almost all the cells were infected and aggregated. On the contrary, Ad1 induced tenfold lower interferon titer in HeLa cells as compared to HEp2 ones (Fig. 2, b). The same results have been also obtained with HeLa S3 cells and Vero cells (data not shown). The drop of interferon expression correlates to the absence of MelBT antiviral action in virus-infected cells.

In the presence of MelBT, the level of interferon increased in the presence of rIFN. On the other hand, the level of hexon accumulation did not decrease in MelBT-treated Ad1-infected HeLa cells as compared to untreated culture (Fig. 1, b). The rIFN did not also inhibit the adenoviral infection in HeLa cells. However, in the presence of both MelBT and rIFN, the antiviral effect appeared again (Fig. 1, b). Hexon accumulation in adenovirus-infected cells was sharply inhibited when the addition of MelBT (+ rIFN) is delayed until 8 h post infection (p. i.). Increasing amounts of viral hexon appeared when addition of the drug is delayed beyond this time (not shown). Since adenoviruses are not sensitive to interferon antiviral effects, it is likely the antiviral activity of MelBT is due to activation of both early viral functions and interferon expression.

In the absence of MelBT, Ad1 stimulated interferon expression in HEp2 cells beginning from the 2nd h p. i. (Fig. 2, a). The maximum of interferon synthesis was observed at the 5th h. Later the level of interferon increased, and the second maximum of interferon appeared at the 20-21th h p. i. After 40 h, the third maximum was also revealed. Existence of more than one maximum of interferon induction shows the possibility of virus reinfection beyond each virus growth cycle (16—18 h in our experiments). The infective process developed completely on the third day. Almost all the cells were infected and aggregated. On the contrary, Ad1 induced tenfold lower interferon titer in HeLa cells as compared to HEp2 ones (Fig. 2, b). The same results have been also obtained with HeLa S3 cells and Vero cells (data not shown). The drop of interferon expression correlates to the absence of MelBT antiviral action in virus-infected cells.

In the presence of MelBT, the level of interferon increased in the presence of rIFN. On the other hand, the level of hexon accumulation did not decrease in MelBT-treated Ad1-infected HeLa cells as compared to untreated culture (Fig. 1, b). The rIFN did not also inhibit the adenoviral infection in HeLa cells. However, in the presence of both MelBT and rIFN, the antiviral effect appeared again (Fig. 1, b). Hexon accumulation in adenovirus-infected cells was sharply inhibited when the addition of MelBT (+ rIFN) is delayed until 8 h post infection (p. i.). Increasing amounts of viral hexon appeared when addition of the drug is delayed beyond this time (not shown). Since adenoviruses are not sensitive to interferon antiviral effects, it is likely the antiviral activity of MelBT is due to activation of both early viral functions and interferon expression.
Cytotoxicity and antiadenoviral activity of drugs

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Cells</th>
<th>EC₅₀*, mM</th>
<th>ID₅₀**, mM</th>
<th>ID₅₀/EC₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>MelBT</td>
<td>HEP2</td>
<td>0.7</td>
<td>47.0</td>
<td>67</td>
</tr>
<tr>
<td>MelBT+rIFN, 500 U/ml</td>
<td>HEP2</td>
<td>0.4</td>
<td>45.0</td>
<td>112</td>
</tr>
<tr>
<td>MelBT+rIFN, 1000 U/ml</td>
<td>HEP2</td>
<td>0.15</td>
<td>45.5</td>
<td>303</td>
</tr>
<tr>
<td>MelBT+rIFN, 2000 U/ml</td>
<td>HEP2</td>
<td>0.1</td>
<td>47.5</td>
<td>475</td>
</tr>
<tr>
<td>Izatizon</td>
<td>HEP2</td>
<td>0.8</td>
<td>48.0</td>
<td>60</td>
</tr>
<tr>
<td>Izatizon+rIFN, 1000 U/ml</td>
<td>HEP2</td>
<td>0.13</td>
<td>47.0</td>
<td>361</td>
</tr>
<tr>
<td>MelBT</td>
<td>HeLa</td>
<td>NA***</td>
<td>47.5</td>
<td>—</td>
</tr>
<tr>
<td>MelBT+rIFN, 1000 U/ml</td>
<td>HeLa</td>
<td>0.2</td>
<td>46.0</td>
<td>230</td>
</tr>
<tr>
<td>Izatizon</td>
<td>HeLa</td>
<td>NA</td>
<td>50.0</td>
<td>—</td>
</tr>
<tr>
<td>Izatizon+rIFN, 1000 U/ml</td>
<td>HeLa</td>
<td>0.2</td>
<td>47.0</td>
<td>235</td>
</tr>
</tbody>
</table>

*EC₅₀ — concentration providing 50 % inhibition of virus yield at the 24th h p. i.; **ID₅₀ — concentration providing 50 % inhibition of cell viability (measured by NTI-test); ***NA — not affected.

HeLa cells, and virus hexon synthesis was greatly reduced by simultaneously adding of rIFN and MelBT (see Fig. 1, b and table). MelBT influenced on the induction of interferon in Ad1-infected HeLa cells (Fig. 2). The interferon expression being low until 8th h p. i. increased sharply after 8—9 h p. i. and became further depressed after 12—14 h p. i. Another

![Fig. 3. MelBT retards early transcription (a) and viral replication (b) in Ad1-infected cells. The extracts of Ad1-infected MelBT (2.5 mM)-treated and untreated HeLa cells (106 cells in each variant) were hybridized with nick translated DNA Ad2. The radioactivity of dissected filters was measured according to Cerenkov program. 1 — Control; 2 — MelBT](image-url)
maxima of interferon synthesis were slight. The appearance of virus cytopathic effect was delayed. Since MelBT (as well as izatizon) does not induce any type of interferon in vitro and in vivo [2], and possesses no direct action on translation [8] we conclude that this compound might act on the early viral transcription resulting to be the modification of interferon expression in virus-infected cells.

The possible mechanism of MelBT action makes predictions retarding the beginning of early viral transcription. Accordingly, we measured amounts of total viral RNA and viral DNA in extracts of with and without MelBT-treated infected or uninfected cells (HeLa and HEP2) by dot-hybridization method. In control cells no hybridization signal has been detected. After infection the amounts of viral RNA greatly increased especially from the beginning of the late phase of virus growth cycle (Fig. 3, a). After MelBT treatment the accumulation of early viral RNA was 7—10 fold reduced (Fig. 3, a) as compared to untreated Ad1-infected cells up to the 8th h p.i., and increased beyond this time. As found previously on the model of vaccinia virus-infected cells [8], the 50 per cent inhibition of transcription has been also observed during the late phase of virus growth in MelBT-treated culture. Moreover, the time of half-life of RNA transcripts was identical in MelBT-treated and untreated cells [8]. The delay of viral transcription appeared if MelBT had been added until 8 h p.i. and disappeared when MelBT had been added later.

Earlier it has been shown that MelBT does not inhibit vaccinia virus replication [5]. The equal amounts of adenoviral DNA were observed in MelBT-treated cells and in untreated ones only on the late infection phase (18 h p.i.). However, the analysis of Ad1 DNA accumulation during the virus growth cycle has revealed that drug retards the beginning of viral DNA synthesis in Ad1-infected cells as compared to untreated cells (Fig. 3, b). This effect was obtained when MelBT has been added until 8th h after infection, and disappeared when MelBT has been added later. So, MelBT cannot directly inhibit viral replication. Since the viral DNA-polymerase mRNA is transcribed from the early region of adenoviral genome [16], it is likely this effect of compound follows the delayed early transcription.

Fig 4. The accumulation of DBP- (a), E1A- (b), and VAI RNA- (c) transcripts during virus growth cycle in Ad1-infected HEP2 cells. The extracts of Ad1-infected MelBT (2.5 mM)-treated and untreated HEP2 cells (10⁷ cells in each variant) were hybridized with nick-translated DNA; a— DNA-RNA dot-probed with pDBP0.3; b — DNA-RNA dot-hybridization with synthetic oligonucleotide probe (E1A); c — to test VAI RNA, the nick-translated probe pVA224 was used; 1 — Control; 2 — MelBT
In addition, the same effect of MelBT was shown by testing DBP-gene transcription in Ad1-infected cells. Hence, the accumulation of DBP-transcripts was reduced in MelBT-treated cells as compared to untreated culture during 8—10 h p. i. (Fig. 4, a).

To test whether MelBT treatment influenced on the transcription of early Ad1 1A region (E1A), the amounts of E1A RNA were measured in Ad1-infected cells during virus growth using dot-hybridization with polynucleotide kinase-phosphorylated oligonucleotide probe. Our experimental data showed no influence of compound on E1A transcription (Fig. 4, b).

Since MelBT depresses early transcription and viral replication in Ad1-infected HEp2, HeLa, and HeLa S3 cells with and without interferon, it proves MelBT functions to be interferon-independent.

Adenoviruses are relatively resistant to interferon challenge [14]. The loss of interferon antiviral activity is due to P1/eIF2 kinase inhibition by viral VAI RNA. In the presence of interferon and small quantities of dsRNA, the kinase can phosphorylate initiation factor eIF2 inducing poliosomes disruption and blocking translation [14]. Earlier, the VAI RNA synthesis by RNA-polymerase III has been shown after viral replication beginning [16]. Since the viral DNA-synthesis was retarded in MelBT-treated cells, we have proposed VAI RNA-gene transcription to decrease. To test the level of VAI RNA synthesis, the dot-hybridization has been used. Our data have been demonstrated VAI RNA accumulation to be retarded and reduced in MelBT-treated Ad1-infected HEp2 cells as compared to untreated Ad1-infected cells (Fig. 4, c). These data were completely confirmed by Northern analysis of VAI RNA (Fig. 5, a). The loss of VAI RNA was not observed when the addition of drug has been provided on the late phase of virus growth cycle (Fig. 5, b). So, it is evident the antiviral agent does not directly suppress VAI RNA synthesis and RNA-polymerase III activity. The rIFN has also shown no effect on VAI RNA transcription (Fig. 5, b). Moreover, the drop of VAI RNA transcription was appeared in MelBT-treated Ad1-infected HeLa cells (Fig. 5, c) when the adenoviral infection was MelBT-resistant, and the Ad induced the low titer of interferon.

Fig. 5. MelBT effect on VAI RNA synthesis. The RNA of Ad1-infected cells (10⁶ cells in each variant) was extracted at the 16th h p. i. and run in electrophoresis. VAI RNA analysis was provided by Northern blot probed with pVA224; a — VAI RNA of Ad1-infected HEp2 cells. 10 ng purified VAI RNA (line 1) was presented. MelBT (2.5 mM) was added (line 2) or not (line 3) in the culture medium at the 1st h p. i. The low molecular RNA of Ad1-infected HEp2 cells (the 1st h p. i.) is also presented (line 4); b — 50 ng of purified VAI RNA was added (line 1). VAI RNA of Ad1-infected untreated HEp2 cells (line 2), and VAI RNA of Ad1-infected HEp2 cells when MelBT (2.5 mM) and rIFN (1000 U/ml) were simultaneously added at the 8th h (line 3) and at the 1st h (line 4) p. i; c — VAI RNA analysis in Ad1-infected HeLa cells. 50 ng purified VAI RNA was run (line 1). MelBT (2.5 mM) was added (line 2) or not (line 3) at the 1st h p. i.
Discussion. Our experimental data show that the main action of MelBT is related with the delay of both early adenoviral transcription and adenoviral replication. Since MelBT does not inhibit the viral protein synthesis without interferon and interferon does not inhibit viral infection without the drug, it is evident that MelBT can suppress the viral defence against interferon action. Actually, interferon is the necessary cell compound participating in the MelBT directed mechanism. How common is such a mechanism restoring interferon action? According to [14], the virus protection against interferon is dependent on VAI RNA which can inhibit interferon activated Pl/eIF2 kinase. The virus defence against interferon action is developed when large amount of VAI RNA appear during the late phase of virus growth cycle. Since the level of VAI RNA synthesis is sharply reduced in MelBT-treated Ad1-infected cells, a high concentration of interferon is capable to increase the initiation of factor eIF2 phosphorylation balloned by translation blocking. Moreover, the rate of translation was greatly stimulated in cell-free extracts from MelBT-interferon-treated Ad1-infected cells when the purified eIF2 was added (data not shown).

The mode of MelBT action described here may be appropriate for another DNA- and RNA-viruses. In addition, we can suggest about the correlation between the interferon-inducing ability of viruses and the antiviral effect of this compound. Moreover, some other MelBT-susceptible viruses [9] possess an analogous protective mechanism against interferon action [17]. Besides, methisazone does not significantly prevent the production of viral antigen by cells already chronically infected with HIV-1. However, in the presence of rIFN, the compound (nontoxic concentrations) can reduce the yield of infective virus in this culture by 10—100 fold.

The viral target of MelBT is still unknown. Since the MeiBT-resistant mutants of vaccinia virus has been obtained earlier [11], it is probable the existence of one virus gene/protein-target of MelBT. Our experiment showed the delay of early transcription in MelBT-treated Ad1-infected cells, but the transcription of early region A1 was not significantly changed. A protein encoded in E1A region promotes the rapid onset of viral transcription. This phosphoprotein predicted from the sequence of its mRNA is to be 289 amino acids long (289 pp) and required to facilitate early transcription [18]. Moreover, it contains a zinc-binding region [19]. On the other hand, MelBT is known as an effective chelating agent [20] which binds preferentially cations Zn$^{2+}$ and Cu$^{2+}$. It is tempting to speculate that MelBT might function by suppressing the 289 pp activity.

Acknowledgements. We thank Dr. Vitaly A. Kordyum for the providing of recombinant human interferon α2, β-galactosidase, and plasmid pLF226 containing the human interferon α2 gene. We thank also Dr. Anatoly G. Terentiev for the providing of fluorogenic substrate for interferon immunoassay, and Dr. Yelene K. Kiseleva for a gift of monoclonal antibodies against hexon Ad1. This work was partially supported by a grant from National Committee of Science and Technology, Ukraine (1.07.01/003).

Acknowledgements. We thank Dr. Vitaly A. Kordyum for the providing of recombinant human interferon α2, β-galactosidase, and plasmid pLF226 containing the human interferon α2 gene. We thank also Dr. Anatoly G. Terentiev for the providing of fluorogenic substrate for interferon immunoassay, and Dr. Yelene K. Kiseleva for a gift of monoclonal antibodies against hexon Ad1. This work was partially supported by a grant from National Committee of Science and Technology, Ukraine (1.07.01/003).
Тестуванням синтезу вірусної ДНК та РНК, а також експресії окремих вірусних генів методами дот- і Нозерн-гібридизації встановлено, що метисазон затримує транскрипцію «ранніх» генів аденовірусу. Це призводить до затримки початку реплікації вірусу і зменшує концентрацію VAI РНК. Оскільки кількість VAI РНК визначає рівень стійкості аденовірусу до інтерферону, то, очевидно, що метисазон посилює деструктивний вплив інтерферону на синтез вірусних білків.

Ю. В. Пацковский, Э. Н. Негребецкая, А. А. Черномаз, Т. П. Волощук, Е. Л. Рубашевский, О. Э. Китам, М. И. Терещенко, Л. Н. Носач, А. И. Потопальский

Ароматичні тиосемикарбазоны, их антивирусное действие и интерферон. 1. Снижение устойчивости аденовируса 1-го типа к интерферону в присутствии метисазона in vitro

Резюме

Изучен механизмы реализации антивирусного эффекта N-метил-изатин-тиосемикарбазона (метисазона) на модели аденоаирусной (аденовирус человека 1-го типа) инфекции in vitro. Показано, что репродукция вируса резистентна к рекомбинантному интерферону человека, а метисазон угнетает вирусную инфекцию только в присутствии интерферона — endo- или экзогенного. Тестированием синтеза вирусной ДНК и РНК, а также экспрессии отдельных вирусных генов методами дот- и Нозерн-гібридизації установлено, что метисазон задерживает транскрипцию «ранних» генов аденовируса. Это приводит к задержке начала репликации вируса и уменьшению концентрации VAI РНК. Поскольку кількість VAI РНК визначає рівень стійкості аденовірусу до інтерферону, то, очевидно, що метисазон посилює деструктивний вплив інтерферону на синтез вірусних білків.

REFERENCES

2. Потопальский А. И., Лозюк Л. В., Миролюбова А. Н., Бесарабов Б. Ф. Противовирусный, противоопухолевый и антилейкозный препарат изатизон.— Киев: Наук, думка, 1991.—192 с.
15. Машатас Т., Фрин З., Слобург Д. Методы генетической инженерии. Молекулярное клонирование.— М.: Мир, 1984.—480 с.
Aromatic thiosemicarbazones, their antiviral action

