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The review is devoted to the analysis of publications on the synthesis of artificial mimics of biological
receptors as well as their application in biotechnology. The special attention is paid to such areas of
biotechnology: sensor technology, solid-phase extraction, pseudoimmunoassay, and chromatography. 
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In the first review [1] the main principles of synthesis
of bioreceptor mimics by the method of molecular
imprinting were described. The main groups of
molecularly imprinted polymers that are being used in
modern biotechnology were reviewed, while the main
attention was focused on polymers-biomimics obtained 
by the method of non-covalent molecular imprinting.
Molecularly-imprinted polymers (MIPs) form the
biggest group of synthetic receptors, which is the most
promising in terms of applications and
commercialization. The present review is devoted to
application of molecularly imprinted polymers in
modern biotechnology, i.e. sensor technology,
solid-phase extraction, pseudoimmunoassay, and
chromatography. 

Chromatography. Chromatography was
historically the first method proposed for the
investigation of MIP recognition ability, which
remains prevalent to date. MIPs are being widely used
as a stationary phase for high-performance liquid
chromatography (HPLC). HPLC is also the most
investigated area in their practical application. That is

associated with the possibility of synthesis of a
stationary phase with the predicted selectivity either
towards individual substance or a group of
structurally-similar substances (depending on research
or technological needs), provided by the technique of
molecular imprinting. A number of publications were
devoted to application of MIPs as a stationary phase in
chromatographic identification of pharmaceuticals
[2-8], drugs [9], amino acids [10-13], sugars [14-16],
pesticides [17-20], antioxidants [21], peptides [22-25],
phenols [26, 27], etc.

Liquid chromatography is an effective method of
MIPs’ properties investigation. However, their
application in liquid chromatography has a number of
essential drawbacks. First of all, it is broadening of
chromatographic peaks associated with difficulties of
mass transfer through the highly-cross-linked polymer
as well as occurrence in MIPs binding sites with
different affinity to the template molecule. Population
of selective sites in MIPs consists of a certain number
of sites with high affinity, while the major part of the
sites is characterized with significantly lower affinity.
Highly affine sites are being saturated quickly, while
the template molecules inside are being strongly
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retained. Therefore, chromatographic separation of
structurally-similar substances takes place mainly
under participation of less affine sites, which results in
poor separation (broadening or overlapping of
chromatographic peaks). Another reason for peaks
broadening is application of polymeric particles of
irregular shape (20-25 mm diameter), obtained by
grinding of synthesized polymeric monoliths, as a
stationary phase for chromatography.

Most of publications in the area of MIP-based
chromatography describe application of traditional
acrylate or methacrylate polymers obtained by
block-copolymerization of methacrylic acid and
ethyleneglycoldimethacrylate. Better results in
chromatographic separation give MIPs obtained by
suspension polymerization [8, 28, 29], multi-step
swelling polymerization [30-34], surface modification
of silica [35], and porous MIP monoliths [36-43].
These areas are the most promising in MIP-based
chromatography.

Solid-phase extraction (SPE). Application of MIPs
in analytical chemistry, biotechnology, medicine, food
chemistry, and environmental monitoring attracts
significant attention of analysts due to necessity of
development new effective methods for sample
pre-concentration and purification [44, 45].  SPE is
widely used for extraction of analytes and removal of
interferents from complex samples, substitution of
aqueous solvents for organic ones, storage and
transportation of samples. 

Significant interest of analysts in solid-phase
extraction is associated with necessity of pre-treatment
of real samples before their analysis by both traditional
instrumental and biosensor methods. This procedure
takes up to 90% of the total time of analysis and forms
85% of its price. It is also remains the main source of
mistakes in the analytical identification of toxic
molecules. There is a necessity in development of new
SPE approaches, which can provide selective
pre-concentration of samples of toxic molecules and
possibility of their analysis in extremely low
(approximately 10-9M) concentrations. Therefore, SPE
is the most promising area of MIPs’ practical
application and commercialization. That is confirmed
by the sharp increase in the number of publications on
the MIP-based pre-treatment of real samples, which

significantly facilitates their further analysis by
traditional analytical methods.

MIPs have a number of advantages as compared to
traditional SPE adsorbents. The main problem in
application of traditional adsorbents is their
insufficient selectivity, which results in high levels of
non-specific adsorption of components of real samples
during analysis. That causes high “noise” levels and
high non-specific peaks in further chromatography,
decreasing effectiveness of the analysis. MIPs
similarly to highly-specific immunoadsorbents provide 
selective adsorption of either template molecules or a
group of substances with similar structure. Therefore,
one can get extracts free from the interferents, while the 
procedure itself includes only one stage even in the
case of real samples. As compared to
immunoadsorbents, the methods of MIP synthesis are
simple, reproducible, and inexpensive, moreover they
are not time-consuming. At the same time, MIPs are
characterized with significantly higher adsorption
capability and storage stability [46, 47]. Stability of
MIPs in the presence of acids, alkalis, and organic
solvents gives a possibility of MIP-based
columns/cartridges application on-line in HPLC.

For the first time MIPs were used in solid-phase
extraction for pentamidine determination in urine [48].
Now they are widely used for purification and
pre-concentration of analytes from real samples in
medicine [49-56], food industry [57-66], and
environmental monitoring [67-77]. This results in the
significant (10-1000 times) decrease in detection limits 
of corresponding analytes.

The major part of MIPs that are being used in SPE
are synthesized according to the method of
non-covalent molecular imprinting by
bulk-polymerization [48, 49, 57, 59, 61, 66, 69-71, 74,
77, 78], precipitation [79], suspension [80],
one/two/multistep swelling polymerization [81-83]. In
most cases, application of traditional
acrylate/methacrylate monomers is proposed, while
MIPs are copolymers of methacrylic acid and
ethyleneglycoldimethacrylate obtained by the method
of bulk polymerization. 

Bulk-polymerization is the easiest and the most
popular method out the above-mentioned ones. It
assumes grinding of the synthesized polymer
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monoliths and fractionating obtained polymeric
particles by size (the fraction 25-50 mm is usually
used). The disadvantage of the method is loss of
30-40% of the polymer during the procedure, while
irregular shape of particles in the case of their on-line
combination with HPLC results in appearance of broad
asymmetric peaks. If these two procedures are carried
out successively (off line), this disadvantage is not
critical. The methods of precipitation, suspension,
one/multistep swelling polymerization are
characterized with less significant loss of the material.
However, they are much more difficult and
time-consuming as compared to the method of bulk
polymerization. 

Application of close structural analogues of a
template molecule in MIP synthesis is an interesting
approach in SPE [82, 84-90]. On the one hand, it
eliminates problems associated with the template
leaching during extraction, which might affect
accuracy of the further analysis. From the other hand, it 
decreases the price of molecularly imprinted polymer,
which is important if the template is expensive. This
approach is also effective if the template is toxic
(bacterial toxins, mycotoxins, substances affecting
nervous system, explosives, etc.). Watabe et al. and
Kubo et al. [84, 85] demonstrated a possibility of MIP
synthesis for the selective adsorption of bisphenol A by 
the method of two-step swelling polymerization. They
used p-tretbutylphenol as a pseudotemplate.
Application of the MIP in SPE combined with HPLC
gave a possibility of bisphenol A detection in
extremely low concentrations in river water samples. A 
similar approach was used for the synthesis of
sameridine-selective [91] and
D,L-tetrahydropalmatine-selective [86] polymers as
well as polymers selective towards harmane,
harmaline, and harmine [87], S-naproxen and
ibuprofen [88], phenobarbital [89], phenylurea
herbicides [92], atrazine [93], zearalenone [94],
domoic acid [82], ochratoxin A [95], and antivirus drug 
abacavir [96].

The most widespread SPE format is glass or
polypropylene cartridges filled with the adsorbent
placed between two porous frits from
polyethylene/Teflon/ stainless steel. The main
disadvantage of this format is a small diameter of

cartridges, which results in a relatively small
productivity. That is especially important in the case of
large-volume probes. Moreover, there is a problem of
SPE combination with instrumental analytical methods 
(gas chromatography-mass spectrometry, HPLC,
HPLC-MS). From this point of view, the method of
microextraction proposed Koster et al. [97] is very
promising. In this case analyte extraction takes place
on the surface of silicon dioxide fibrils, modified with a 
thin MIP layer. The idea of Koster was extended by the
other authors [98], who developed the method of
solid-phase microextraction of triazine herbicides
combined with HPLC. The authors demonstrated a
possibility of prometryn, propazine, atrazine,
symetryn, ametryn, tertbutylazine, and tertbutryn in the 
range 0.012 -0.09 mg/l. The synthesis of the ochratoxin
A-imprinted polymer through polypyrrole
electropolymerization on the surface of stainless steel
frits is proposed in [99]. The modified frits were used
on-line in HPLC.

One of the most promising approaches in the area
of MIP-SPE application is synthesis of MIP monoliths,
obtained either by bulk polymerization [43, 86,
100-103] or grafting polymerization [104]. Porous
structure of these polymeric adsorbents can provide
effective mass-transfer, high productivity, and
effective adsorption of the analyte molecules.
Application of porous MIP monoliths eliminates main
drawbacks of the analysis based on MIP particles (long
preparation times and significant losses of the selective
binding sites during preparation of the polymer).
However, absence of the universal procedure of the
synthesis of highly-productive monoliths demands
optimization of the synthetic procedure for the each
new template.   

From this point of view, application of porous MIP
membranes, obtained either by in situ polymerization
[105-116] or grafting polymerization of a thin MIP
layer on commercially-available porous microfiltration 
membranes [117-120] in SPE proposed for the first
time by our group is to be considered. These methods
are universal and quite simple. They don’t require
optimization in the case of use of different template
molecules. Moreover, in contrast to polymeric
particles, no loss of the polymeric material takes place
during the membranes’ synthesis. The MIP membranes 
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are highly productive and provide good mass transfer.
An additional advantage of the MIP membranes is that
they can be combined on-line with instrumental
analytical methods. Due to the absence of mechanical
deformation, the synthesized MIP membranes
demonstrate the highest documented adsorption
capabilities towards template molecules (60-160 mM/g
polymer). Adsorption capability of the MIP adsorbent
based on polymeric particles is significantly lower as
compared to the MIP membranes and according to data
presented by different authors varies from 1-40 mM/g
polymer.

Immunosorbent pseudoimmunoassay based on
molecularly imprinted polymers.  Unique properties of
antibodies (capability of selective recognition of
corresponding antigens) stimulated development of
radioimmunoassay and enzyme-linked immunosorbent 
assays, which became routine methods for laboratory
detection of various analytes [121-124]. Since
molecularly imprinted polymers as well as antibodies
capable of selective recognition of corresponding
template molecules, they can be used in immunoassays
as a highly-stable alternative to natural receptors.
Similarly to immunoassay, this approach is called
“molecularly imprinted sorbent assay” (MISA).

Application of MIPs in immunoassays was
proposed for the first time by Mosbach et al. [125], who 
developed a procedure of competitive
radiopseudoimmunoassay for detection of theophiline
and diazepam. Theophiline and diazepam extracted
form plasma samples by an organic solvent were
analyzed. MIP particles were separated by
centrifugation and concentration of the radioactive
analyte in the supernatant was determined. The authors
demonstrated the possibility of theophiline and
diazepam detection within the range 14-224 mM, which 
is comparable to sensitivity of immunoanalysis for
these substances. This approach was further developed
and MIP-based immunoassays for morphine and
enkephaline were developed [126]. The special feature
of these polymers is their capability of analyte
recognition in aqueous media. Affinity and selectivity
of the polymers in aqueous environment were worse as
compared to organic solvents. However, sensitivity
and selectivity of the MIP-based assay were similar to
those of immunoassay. Using these principles a

number of pseudoimmunoassays for (S)-theophiline
[127], (S)-propanolol [128], atrazine [129, 130],
estradiol [131], corticosterone, cortisole [132],
ß-lactam antibiotics [133, 134], 2,4-D [135-137] etc.
were developed. Importantly, MIPs can be obtained not 
only for low-molecular weight substances. From this,
point of view the papers [138, 139] are of great interest. 
They describe data on visualization of
radioactively-labeled proteins (albumin, lactalbumin,
lisozyme, ribonuclease, and streptavidine).
Protein-selective molecularly imprinted sites were
obtained by plasma-polymerization of C3F6, deposited
on mica surface with the previously adsorbed proteins
covered by a disaccharide layer. Removal of mica and
extraction of the template molecules resulted in
formation of imprints in the polymer that were capable
of selective adsorption of radioactive analogues of the
template molecules. 

Enzyme labels are successfully used in MISA
along with radioactive labels. Tobacco and horseradish 
peroxidases were used for development of MISA for
2,4-D, atrazine, epinephrine, and phenylephedrine
detection [140-145]. Detection limits of the
above-mentioned analytes were in submicromolar range 
and were similar to those of ELISA. In many cases
selectivity of MIP-based immunosorbent assays was
higher as compared to antibody-based assays [128, 129].

The most promising MISA variants are presented
in [143, 144, 146]. The authors describe modification
of the surface of standard 96-well ELISA plates by a
thin polymer layer using the method of grafting
polymerization. That gives a possibility to avoid
technological problems associated with the use of
polymeric particles (washing and separation of the
particles by centrifugation) and provides rapid
screening of samples. Piletsky et al. developed a
test-system for epinephrine and ephedrine detection
[143]. The method of modification of polystyrene
ELISA plates by a thin layer of molecularly-imprinted
poly-3-aminophenylboronic acid was proposed.
3-Aminophenylboronic acid was used as a functional
monomer capable of formation molecular complexes
with the template due to formation of electrostatic,
hydrophobic, and reversible covalent bonds. At the
same time, 3-aminophenylboronic acid was used as a
cross-linker, which was responsible for fixation of the
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template-functional monomer complexes in the
polymeric network. Sensitivity of the developed
test-system comprised 1-100 mM. Unfortunately the
described polymers could not be used for the analysis
of biological samples, since presence of serum proteins
and sugars resulted in a significant decrease in the
sensitivity. The application of the developed
test-systems was limited to non-biological samples only.

Similar approach was used for the development of a 
pseudoimmuno-test-system for atrazine detection
[144, 146]. The authors describe competitive analysis,
based on competition of atrazine and its analogue
(5-(4,6-dichlorotriazinyl)aminofluoresceine) for
atrazine-selective MIP sites. The test-systems for
low-molecular weight substances (atrazine,
epinephrine, and ephedrine) as well as proteins
(microperoxidase, lactoperoxidase, horseradish
peroxidase, and cytochrome C) were developed. In this
case, molecularly imprinted polyaniline grafted to the
polystyrene surface woks as an antibody mimic. The
assay does not require application of additional dyes
for visualization of the bound molecules.

Most of the existing variants of MISA based on
application of either radioactive or enzyme labels are
heterogeneous assays, which require additional stage
of bound and free analytes. An interesting approach in
MISA is its homogeneous variant based on fluorescent
labels. This approach is based on application of
fluorescent functional monomers for the polymer
synthesis, while binding of template molecules with the 
analyte-selective site changes the fluorescence
intensity. These changes are proportional to the analyte 
concentration in the analyzed sample. From this point
of view, the method of covalent imprinting based on
reversible covalent interactions between the template
and functional monomers was found to be the most
effective [147, 148]. Application of a non-covalent
approach for the development of fluorescent
homogeneous pseudoimmunoanalysis was described
in [149-152]. The authors prove formation of
electrostatic interactions and hydrogen bonds between
fluorescent functional monomers and templates. The
main drawback of this approach is high fluorescent
background, which limits sensitivity of the analysis.

It should be noted that antibodies are the
widespread and effective reagents for immunoanalysis. 

However, MIPs can provide a promising alternative.
Despite the fact that recognition of analytes by
molecularly imprinted polymers in aqueous
environment in many cases needs further
improvement, MIP-based analysis in organic solvents
is more sensitive as compared to the antibody-based
one. That significantly broadens possibilities of
detection of nonimmunogenic substances.

Molecularly imprinted polymers in sensor
technology. It is widely recognized that biosensor
methods are the most effective methods of modern
analytical biotechnology. They are characterized by
high sensitivity and selectivity, short time of analysis,
and low cost. MIPs can be used as substitutes of
antibodies in pseudoimmunoanalysis as well as in
sensor technology. The MIP-based sensors are similar
to immunosensors or enzyme sensors. MIPs are used as 
sensor selective elements, which is responsible for
analyte recognition. At the same time, MIP is in the
close contact with a physical transducer, which is
responsible for transformation of the signal occurring
after the analyte binding into electrochemical, thermal
or optical one. This signal is proportional to the analyte
concentration in the analyzed sample.

Similarly to immunosensor devices, the event of the
analyte binding in MIP-based sensors is not
accompanied with appearance of electroactive products
(protons, electrons, etc.). The sensors for direct
detection of MIP-analyte binding are based on changes
in properties of the immobilized MIP (charge, weight,
capacity) after the interaction with the corresponding
analyte. Despite the fact, that these changes are very
insignificant, a number of sensors based on detection
MIP-analyte binding using mass-selective detectors
(quartz-crystal microbalance [153-162] and Love
wave-based sensors [154, 163]) were described. These
transducers were used for development of sensors for
glucose based on electropolymerized
poly(o-phenylenediamine [153], sensors for organic
solvents based on polyurethanes [155, 157], sensors for
(S)-propanolol [158] and caffeine [161] based on
traditional acrylate polymers). Since weight of the
immobilized MIP after its interaction with the
corresponding analyte changes insignificantly,
sensitivity of these devises is relatively low. The
analytes can be detected in micro- milimolar range.
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Among the publications devoted to direct detection
of a MIP-analyte binding event, papers on
development of capacitive and potentiometric sensors
based on electrodes/field effect transistors modified
with a thin MIP layer grafted to the transducer surface
are of great importance [117, 146, 164-168]. The
disadvantage of this approach is obligatory solubility
of the template molecule in aqueous solutions, which
makes impossible the development of sensors for
water-insoluble analytes. 

An alternative approach is based on special features
of an analyte, which can be used for the detection of the
MIP-analyte binding event (the analyte can be either
fluorescent [154, 169, 170] or electroactive [171]).
Suarez-Rodriguez and Diaz-Garcia used HPLC with
fluorescent detection as a sensor system for detection of
fluorescent substance flavonol in nanomolar range [170].

In the case when the analyte is neither fluorescent
nor electroactive, competitive analysis based on
application of the labeled analyte is used. The labeled
analyte compete with the paternal one for the selective
sites of the polymer [134, 172-175]. Haupt et al.
developed a sensor for 2,4-D detection. The sensor is
based on competition of 2,4-D and its analogue labeled
either with fluoresceinethiocyanate or 14C. Application
of both labels provided 2,4-D detection with the
detection limit 100 nM in a competitive assay.

The best results in development of MIP-based
sensors would be achieved, when the sensor signal is
generated directly by the polymer and is not dependent
on properties of the template molecule. That would
result in significant facilitation of the analysis. A
typical example is modification of MIPs with signal
groups capable of either generation or amplification of
the sensor response [149, 176-179]. Turkewitsch et al.
and Matsui et al. proposed application of fluorescent
functional monomers
(trans-4-[n-(N,N’-diethylamino)styryl]-N-vinylbenzyl
pyridinechloride and fluorescent metaloporphyrine,
respectively) for the synthesis of molecularly
imprinted polymers [149, 176]. Binding of cAMP and
9-ethyladenine with these functional monomers results
in a decrease in the polymer fluorescence, which is
proportional to the analyte concentration. During the
recent years, molecularly imprinted polymers based on
cross-linked fluorescent poly-(n-phenylenevinylene)

were synthesized. At the same time, the binding event
MIP - 2,4,6,-trinitrotoluene changes natural
fluorescence of the polymer [180]. The devices, based
on MIPs modified with signal groups, provide a
possibility of analyte detection in micromolar range.

Much more universal approach towards
development of MIP-based sensors capable of
generation of the sensor response was proposed by our
group [181, 182]. The approach is based on application
of molecularly imprinted polymer membranes able to
change their electrical conductivity in the presence of
template molecules (particularly triazine herbicides),
which was detected by a conductometric method. The
change of electrical conductivity of the MIP
membranes was proportional to triazines concentration 
within the range 5-100 nM. The analysis doesn’t
require labeling neither polymer nor analyte.

Existing pseudoimmuno/pseudoenzyme
MIP-based sensors can be affiliated either to
electrochemical (amperometric [171, 183],
potentiometric [181, 187], capacitive [167, 188]) or
optical (fluorescent [149, 169], acoustic [155],
colorimetric [173]) sensors.

Effectiveness of MIP application as selective
elements of pseudoimmunosensor devises was
demonstrated by the numerous investigations. MIPs
provide highly selective detection of different analytes, 
which is similar or better (with respect to selectivity) as
compared to the similar immunosensor devises. The
main problems arising during development of
MIP-based sensors are associated with registration of
the MIP-analyte binding event as well as integration of
MIPs with physical transducers. That can be the main
reason for poor sensitivity of the developed sensors.
These problems can be solved through development of
the universal method of synthesis of molecularly
imprinted polymers capable of both recognition of
corresponding analytes and generation of the sensor
signal. 

Development of analytical methods based on
molecularly imprinted polymers is a promising area of
modern biotechnology. Application of MIPs in
chromatography, solid-phase extraction,
pseudoimmunoassay, and sensor technology is an
attractive alternative to the application of bioreceptors
and enzymes. The main problems associated with
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application of MIPs in biotechnology are caused by
technological difficulties arising during application of
MIP particles in separation and sensing. The most
promising area in practical application of MIPs is
development of highly-stable polymers-biomimics in a 
form of membranes and thin films. 
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Ò. À. Ñåð ãåºâà 

Ìî ëå êó ëÿð íî-³ìïðèí òî âàí³ ïîë³ìåðè ÿê 

øòó÷í³ àíà ëî ãè á³îëîã³÷íèõ ðå öåï òîð³â. 

2. Ïðàê òè÷ íå çà ñòî ñó âàí íÿ ó íîâ³òí³é á³îò åõ íî ëîã³¿ 

Ðå çþ ìå 

Îãëÿä ïðè ñâÿ ÷å íî àíàë³çó ðîá³ò ó ãà ëóç³ îò ðè ìàí íÿ øòó÷ íèõ
àíà ëîã³â á³îëîã³÷íèõ ðå öåï òîð³â òà ¿õíüî ìó ïðàê òè÷ íî ìó çà -
ñòî ñó âàí íþ â á³îò åõ íî ëîã³¿. Îñíîâ íó óâà ãó â öüî ìó ñåíñ³
ïðèä³ëåíî òà êèì ãà ëó çÿì íîâ³òíüî¿ á³îò åõ íî ëîã³¿, ÿê ñåí ñîð íà
òåõ íî ëîã³ÿ, òâåð äî ôà çî âà åêñòðàêö³ÿ, ïñåâ äî³ìó íî à íàë³ç, à
òà êîæ õðî ìà òîã ðàô³ÿ.

Êëþ ÷îâ³ ñëî âà: ìî ëå êó ëÿð íèé ³ìïðèí òèíã, ìî ëå êó ëÿð -
íî-³ìïðèí òî âàí³ ïîë³ìåðè, ïîë³ìåðè-á³îì³ìå òè êè.

Ò. À. Ñåð ãå å âà

Ìî ëå êó ëÿð íî-èì ïðèí òè ðî âàí íûå ïî ëè ìå ðû êàê 

èñ êó ññòâåí íûå àíà ëî ãè áè î ëî ãè ÷åñ êèõ ðå öåï òî ðîâ. 

2. Ïðàê òè ÷åñ êîå ïðè ìå íå íèå â ñî âðå ìåí íîé áè î òåõ íî ëî ãèè

Ðå çþ ìå 

Îáçîð ïî ñâÿ ùåí àíà ëè çó ðà áîò â îá ëàñ òè ïî ëó ÷å íèÿ èñ êóñ-
ñòâåí íûõ àíà ëî ãîâ áè î ëî ãè ÷åñ êèõ ðå öåï òî ðîâ è èõ ïðàê òè ÷åñ -
êî ìó ïðè ìå íå íèþ â ñî âðå ìåí íîé áè î òåõ íî ëî ãèè. Îñî áîå âíè ìà -
íèå â ýòîì ïëàíå óäå ëå íî òà êèì îá ëàñ òÿì áè î òåõ íî ëî ãèè, êàê
ñåí ñîð íàÿ òåõ íî ëî ãèÿ, òâåð äî ôà çî âàÿ ýêñ òðàê öèÿ, ïñåâ äî èì -
ìó íî à íà ëèç, à òàê æå õðî ìà òîã ðà ôèÿ. 

Êëþ ÷å âûå ñëî âà: ìî ëå êó ëÿð íûé èì ïðèí òèíã, ìî ëå êó ëÿð -
íî-èì ïðèí òè ðî âàí íûå ïî ëè ìå ðû, ïî ëè ìå ðû-áè î ìè ìå òè êè. 
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