Influence of divalent cations Ca2+ and Zn2+ on the activation of posthypertonic hemolysis of human erythrocytes

S. V. Patelaros

Institute of Problems of Cryobiology and Cryomedicine of National Academy of Sciences of Ukraine
23 Pereyaslavska str., Kharkiv, 310015, Ukraine

Introduction. It is well known that an attempt to transfer red blood cells from hypertonic media to isotonic one bring about RBC membrane damage and hemolysis which is called posthypertonic hemolysis [1]. Data, obtained by several authors [1—4] suggest a significant role of composition of hypertonic solution, time of exposure, toxicity of the solution after dilution, cell volume and initial tonicity after which RBC were subjected to hypertonic treatment by dialysis [5] or freezing and subsequent rehydration or thawing [2]. It is still remain unclear why RBC can not restore their initial volume after dehydration without membrane damage.

Divalent cation such as Ca2+ and Zn2+ are effective protectors against membrane damage inflicted by variety of hemolytic agents, including viruses, bacterial and animal toxins, and detergents [3, 6—9] as well as hypotonic conditions [10]. We have shown that this is also true for posthypertonic hemolysis [11]. These common features suggest an universality of the mechanism of pore formation in RBC membrane, which is partially independent on hemolytic stimuli. In this study we show that divalent cations Ca2+ and Zn2+ together with their inhibiting effect [11] exhibit additional property to activate posthypertonic hemolysis under conditions where cells were rehydrated in the cation contained media. This property demonstrates distinction between posthypertonic membrane pores and those initiated by action of other lysins thus suggesting differences in the mechanism of their formation and molecular structure.

Materials and Methods. Human RBC were obtained from a clinical blood bank. They were washed 3 times in a 10-fold excess of tris-buffered saline (TBS = 150 mM NaCl, 20 mM tris-HCl, pH 7.4) using 2,000 g for 3 min on each occasion. 0.1 ml of RBC were incubated in 0.90 ml of 1.2 M sucrose or 1.5 M NaCl both with 5 mM phosphate buffer at pH 7.4 at 37 °C and then 10 μl of erythrocyte suspension were transferred into 1 ml of isotonic media of various composition at room temperature. After 5 min incubation the cell suspension was centrifuged (2,000 g, 3 min) and hemoglobin content in the supernatant
was determined by absorption at 415 nm. The percentage hemolysis was calculated from a comparison with the optical density of a fully lysed sample.

The distribution of cell volumes in the samples was measured using a Coulter-type apparatus with an orifice 50 μm long × 5 μm in diameter [12, 13] using a current < 0,3 mA. 2·10⁵ cells were sampled in each measurement and the mean linear velocity through the orifice was < 1 m/sec: the cells were not significantly deformed [12].

Results. Fig. 1 shows the time dependence of posthypertonic hemolysis of RBC, dehydrated in hypertonic NaCl and sucrose media, and rehydrated in isotonic electrolyte (NaCl) and non-electrolyte (sucrose) media in the presence or absence of divalent cations. Prolonged cell incubation under hypertonic conditions results in a gradual increase in the extent of hemolysis.

The effect of cations depends on the type of both dehydrative and rehydrative media. Zn²⁺ and Ca²⁺ cations increased lysis by 2- and 3-fold, respectively, relative to control value after dehydration in sucrose hypertonic medium, independently of the type of rehydrative medium. However after dehydration in NaCl hypertonic medium Zn²⁺ cations fail to produce activation of hemolysis during rehydration in electrolyte medium, whereas Ca²⁺ ions inhibit it (Fig. 1, A). There was no appreciable effect of Ca²⁺ i non-electrolyte rehydrative medium though it slightly activated hemolysis at short-term exposure, and Zn²⁺ ions stimulated lysis (Fig. 1, C). Stimulation of posthypertonic lysis by divalent cations was a function of cation concentration.

Fig. 2 and 3 show the dependence of posthypertonic hemolysis on the concentration of Ca²⁺ and Zn²⁺ ions during rehydration in NaCl and sucrose isotonic media. In both type of rehydrative medium Ca²⁺ ions activated posthypertonic hemolysis of cells, dehydrated in hypertonic sucrose, while poorly affected hemolysis of RBC, dehydrated in hypertonic NaCl and rehydrated in isotonic sucrose. The extent of posthypertonic hemolysis of these RBCs was considerably reduced during rehydration in sucrose-containing media (Fig. 2, B). In contrast to Ca²⁺, Zn²⁺ ions lose their stimulatory ability only subsequent rehydration in NaCl medium (Fig. 3, A). Moreover, the concentration of Zn²⁺ ions which is required for activating lysis, has shown to be three order of magnitude lower then the corresponding concentration of Ca²⁺ ions (compare Fig. 2 and 3). These data show that treatment of cells in hypertonic NaCl solution followed by rehydration in isotonic NaCl solution eliminates the effect of posthypertonic hemolysis activation caused by both Ca²⁺ and Zn²⁺ ions. Hence,
the alteration occurring in the membrane and cytoplasm of cells, dehydrated in saline medium, differ from those in non-electrolyte medium (sucrose). This may be due to different changes in transmembrane potential and effluxes of cations and anions, resulting in various alterations in the intracellular content and pH.

Hypertonic non-electrolyte medium causes a decrease in the content of K\(^+\) and Cl\(^-\) ions in cytoplasm, accompanied by an increase in pH [12]. In hypertonic electrolyte medium leakage of K\(^+\) cations will not result in the corresponding loss of Cl\(^-\) anions due to inward Cl\(^-\) gradient. Hence, hypertonic treatment leads to significantly altered Cl\(^-\) contents in cells treated by non-electrolyte solutions. To assess the role of electrolytes in the mechanism of posthypertonic hemolysis activation by Ca\(^{2+}\) and Zn\(^{2+}\) ions, RBC were dehydrated in 1.2 M sucrose in the presence of 100 mM Na\(^+\), K\(^+\), Mg\(^{2+}\) and Ca\(^{2+}\) salts. The data represented in Fig. 4 show that dehydration in sucrose medium in the presence of Na\(^+\), K\(^+\) and Mg\(^{2+}\) reduces the level of posthypertonic hemolysis by 2—3-fold, and does not influence the ability of Ca\(^{2+}\) and Zn\(^{2+}\) ions to activate posthypertonic hemolysis as they do in the case when dehydration was performed in pure non-electrolyte medium. In contrast, Ca\(^{2+}\) ions when present in dehydrative medium, completely eliminate the posthypertonic hemolysis activation, effect is not due to simple rise in ionic strength. This is also supported by the analysis of volume distribution of rehydrated RBC, obtained after dehydration in electrolyte and non-electrolyte media (Fig. 5).

Activation of posthypertonic hemolysis by Zn\(^{2+}\) ions after cell dehydration in hypertonic sucrose is accompanied by an increased amount of cells and ghosts in the swollen subpopulation indicating that under these conditions a larger number of cells undergo hemolysis. This finding differs from corresponding volume distributions, obtained for Ca\(^{2+}\) ions, where reduced modal volume of swollen subpopulation
was found. The later supports the view that Ca\(^{2+}\) ions facilitate formation of large membrane pores which restrict colloidal-osmotic swelling of cells, resulting in the formation of ghost without cells acquiring critical hemolytic volume. Zn\(^{2+}\) ions do not affect volume distributions (Fig. 5, A) as well as hemolysis of rehydrated RBC after dehydration in NaCl medium (Fig. 3). On the other hand, the inhibiting action of Ca\(^{2+}\) ions in this case resulted in a reduced swelling of the cells which also correlated with their influence on hemolysis. The revealed peculiarities in the Ca\(^{2+}\) and Zn\(^{2+}\) ions action on posthypertonic hemolysis activation and volume distributions after cell rehydration demonstrate critical role of shrinking in the development of cell injury during rehydration. At this stage a prerequisites for irreversible changes in cells are formed. They are subsequently manifested at the stage of rehydration and may be modulated by divalent cations. Hemolysis activation is due to the interaction between cations and membrane sites, regulating membrane permeability [11]. Though the nature of these site remains unknown the data obtained permit to conclude on some of their properties.

Activating sites are formed in cells under hypertonic conditions, since Ca\(^{2+}\) cations are incapable of activating hypotonic lysis of RBC, which, alike posthypertonic hemolysis, results in the swelling of cells. Ca\(^{2+}\) is known to inhibit hypotonic hemolysis [10]. Sites are cation specific. This is supported by the fact that posthypertonic hemolysis is activated by only Ca\(^{2+}\) and Zn\(^{2+}\) cations. Other cations such as Mg\(^{2+}\), Na\(^{+}\), K\(^{+}\), Ch\(^{+}\) are capable of inhibiting but not activating posthypertonic hemolysis [11]. This may be due to electrostatic screening of charges in the mouth of a hemolytic pore [8]. Despite the concentration of Ca\(^{2+}\) ions which is required for activation is high enough (>20 mM), their action is not accounted for by the screening effect, because only incubation of RBC in hypertonic medium in the presence of 100 mM Ca\(^{2+}\) completely eliminates the activating effect of Ca\(^{2+}\) and Zn\(^{2+}\) on posthypertonic hemolysis. A similar incubation in the presence of the other ions, though reducing the level of posthypertonic hemolysis, nevertheless, does not affect the activating properties of Ca\(^{2+}\) and Zn\(^{2+}\) (Fig. 4). Finally, the concentration of Zn\(^{2+}\) ions (~30 μM) required for hemolysis activation is by three orders of magnitude lower than that of Ca\(^{2+}\) (50 mM). Obviously, the effect of Zn\(^{2+}\) ions in such low concentrations may be due solely to specific binding with membrane components. Whether or not one and the same structure of lipid or protein nature with differing ionic specificity and affinity to Ca\(^{2+}\) and Zn\(^{2+}\) cations is
INFLUENCE OF Ca2+ AND Zn2+ ON THE ACTIVATION OF HEMOLYSIS

Fig. 5. Volume distributions of RBC after 15 min dehydration in hypertonic NaCl (A) and sucrose (B) media followed by rehydration in isotonic NaCl solution in the absence and presence of 0.1 mM Zn2+ and 100 mM Ca2+. Contr-volume distribution of control erythrocytes in isotonic NaCl medium

responsible for posthypertonic hemolysis activating effect of both Ca2+ and Zn2+. Such an ability demonstrates the specific action of Ca2+ on the membrane and/or cytoplasmic structures which are responsible for activation remains unclear. Parallelism was shown in the activating action of Ca2+ and Zn2+ for cell incubated in hypertonic sucrose (Fig 1, B, D). A failure to detect a corresponding parallelism following RBC incubation in hypertonic NaCl, after which posthypertonic hemolysis is not longer affected by Ca2+ ions during rehydration in both isotonic solutions (Fig. 1, A, C), as well as the maintenance of Zn2+ activating properties following rehydration in non-electrolyte isotonic medium (Fig. 3, B), suggest that sites for Ca2+ and Zn2+ ions may be different.

The notion that modes of Ca2+ and Zn2+ activation action are different is additionally supported by the data on the volume distributions of the mixed population of cells and ghosts, obtained after rehydration in media in the presence of these ions (Fig. 5). The volumes of ghosts in the presence of Ca2+ (right pick of distribution) are considerably lower than those in the presence of Zn2+, which testifies to larger dimensions of pores. Earlier we have shown that both monovalent and divalent ions, as well as EDTA and sucrose, inhibit posthypertonic hemolysis after addition into the medium a short while after onset of hemolysis [11]. Since such an influence was also ion-specific and could not be accounted for by the screening effect, it has been suppose that cations specifically bind to blocking sites on the external membrane surface, and close hemolytic pores in membranes. Here we observe the activating effect of the same Zn2+ and Ca2+ cations (but not Mg2+) when the ions are originally present in the rehydrative medium. The data reported elsewhere [3, 6—9] demonstrate that divalent and monovalent cations inhibit membrane defects, produced by the action of hemolytic agents of various origin. Their activating influence has also been shown for RBC lysis induced by melittin [14].

However, phenomenon of lysis activation by divalent cations were not observed on model lipid systems (liposomes), with composition close to RBC membranes, [14]. Hence, activation seems to require some protein components of RBC membrane. The latter is also supported by the fact that inhibition of lysis in lipid vesicles systems requires Zn2+ concentrations to be by 10—100-fold higher than those for RBC [14, 15]. Hence, one may conclude that reswelling of RBC from hypertonic media leads to formation of composite pores in their membranes. The structure of the pores involves at least two activating ion-specific and one blocking site for divalent cations. It is probably that membrane proteins participate in pore formation, while the exact structure of the pore and the ability of sites to interact with divalent cations depends on electrolyte and non-electrolyte composition of dehydrative and rehydrative media.
Активуючий вплив дивалентних катіонів Ca\(^{2+}\) і Zn\(^{2+}\) на постгіпертонічний лізис еритроцитів людини

Резюме

Еритроцити людини інкубували в різних середовищах при температурі 37 °C у гіпертонічних розчинах 1,5 M NaCl і 1,2 M сахарозу та гіпертонічних середовищах NaCl і сахарози, при гіпергіпертонічних середовищах Ca\(^{2+}\) і Zn\(^{2+}\). Встановлено, що вони здатні активувати постгіпертонічний лізис еритроцитів, якщо початкова діаграма здійснюється в сахарозному середовищі. Така активация не спостерігається у випадку лізису індукуваних різними гемолітичними агентами (мелаїн, тритон X-100 і т. і.), де ці катіони прокальюють лише пригнічуючий ефект. Попередня інкубація клітин у гіпертонічному розчині NaCl має лише пригнічуючий ефект у випадку дегідратації еритроцитів, які входять два активуючих іоноспеціфічних і один блокуючий сайти для дивалентних катіонів. Указаний ефект усуває. Обробка дегідратованих еритроцитів в гіпертонічному розчині NaCl різними гемолітичними агентами (мелітин, тритон X-100 і т. і.) і сахарози при присутності дивалентних катіонів Ca\(^{2+}\) і Zn\(^{2+}\) не впливає на активирующую способність іонів Ca\(^{2+}\) катіони. Указані сайти здатні активувати постгіпертонічний лізис (ПЛ) еритроцитів, якщо початкова активация не наблюдается. Предварительна инкубація клітин у гіпертонічних середовищах NaCl відбувається формування мембранних гемолітичних пор, до структури яких входять два активуючих іоноспеціфічних і один блокуючий сайт для дивалентних катіонів. Вказаний ефект здатні активувати постгіпертонічний лізис не наблюдается в ізотонічних середовищах NaCl і сахарози при температурі 37 °C у гіпертонічних розчинах 1,5 M NaCl і 1,2 M сахарози.

C. V. Пателарос

Активуючий вплив дивалентних катіонів Ca\(^{2+}\) і Zn\(^{2+}\) на постгіпертонічний лізис еритроцитів людини

REFERENCES

Received 07.04.98