Ultrastructural organization of replicating chromatin in prematurely condensed chromosomes

E. A. Arifulin
A. N. Belozersky Institute of Physico-Chemical Biology,
M. V. Lomonosov Moscow State University,
Leninskie gory, house 1, building 40, Moscow, Russian Federation, 119992
lewanit@yandex.ru

Aim. The ultrastructural aspect of replicating chromatin organization is a matter of dispute. Here, we have analyzed the ultrastructural organization of replication foci using prematurely condensed chromosomes (PCC).

Methods. To investigate the ultrastructure of replicating chromatin, we have used correlative light and electron microscopy as well as immunogold staining.

Results. Replication in PCC occurs in the gaps between condensed chromatin domains. Using correlative light and electron microscopy, we observed that the replication foci contain decondensed chromatin as well as 80 and 130 nm globules, those were also found in condensed non-replicating chromatin domains. Using immunogolding, we demonstrated that DNA replication in S-phase PCC occurs in loose chromatin on the periphery of dense chromatin domains.

Conclusion. Replication in PCC occurred in the decondensed chromatin neighboring the condensed chromatin without formation of special structures.

Keywords: chromatin, replication, prematurely condensed chromosomes (PCC), ultrastructure.

Introduction

A characteristic feature of DNA replication in nuclei of higher eukaryotes is that it occurs at a few hundred discrete replication foci [1]. The molecular functioning and composition of replication foci have been previously comprehensively studied [2]. However, their ultrastructural organization was a matter of dispute for a long time, and it has remained unclear until now. In various studies, the replication foci were examined using chromatin digestion followed by chromatin electroelution, which visualized them as ovoid bodies, so called «the replication factories» ranging from 100 to 1000 nm in diameter, that contain all the necessary replication factors to drive the progression of many replication forks [3, 4]. However, the removal of 90 % of chromatin, which was required to discover those bodies, violently alters the native chromatin structure. Later studies revealed that the structures analogous to the replication factories could be visualized in permeabilized cells without chromatin extraction [5]. Two types of DNA replicating factories, approximately 100- and 400-nm in diameter, were observed. Both of them contained the proteins involved in DNA replication (polymerase α and PCNA). These data were obtained using permeabilization, which could be a source of artifacts [6]. In contrast to the previously described data, the studies on unpermeabilized cells indicate that DNA replication occurs in a loose material on the periphery of condensed chromatin domains [7–9]. Thus, the data concerning the replication domain structure are contradictory. The existence of special bodies, which implement DNA replication, has been only confirmed in permeabilized cells.

It is possible that the structures such as replication factories could be masked in situ by an intra-nuclear material, e.g., RNA and proteins. Physiological con-
densation of interphase chromatin with partial removal of the soluble fraction can be achieved in prematurely condensed chromosomes (PCC). Formation of PCC can be induced by fusing mitotic and interphase cells [10]. It has been demonstrated that chromatin condensation does not invade replication foci during S-phase PCC [11–13]. Therefore, this experimental system provides a great opportunity to investigate replicating chromatin in situ. In this study, we propose the application of a method utilizing PCC and a 5-ethynyl-2’-deoxyuridine (EdU) replication detection system as an approach for studying the ultrastructure of replication foci.

Material and Methods

M-HeLa cells were grown in DMEM supplemented with L-glutamine, 10 % fetal calf serum (HyClone, UK) and an antibiotic/antimycotic solution (Invitrogen, USA). Before experimentation, cells were seeded on glass coverslips or in Petri dishes and grown for 1–2 days until they formed a subconfluent monolayer. To induce the formation of PCC, cells were washed twice with PBS, incubated in 50 % PEG (Sigma, USA) in PBS for 30 sec and washed three more times with PBS. Subsequently, the cells were returned to culture medium and incubated for an hour. Replication pulse labeling was performed by the addition of 20 μM EdU during the last 5 (for immunogolding) or 10 (for light microscopy) min of incubation.

After PCC induction, the cells were prepared for the chromosome spread by harvesting from Petri dishes using a Trypsin-EDTA solution and incubation in 0.075 M KCl for 10 min at 37 °C. Cell suspensions were subsequently fixed by overnight incubation in a chilled ethanol-acetic acid solution. Fixed cell suspensions were dropped onto wet glass pieces and air-dried at room temperature. After drying, the samples were rehydrated and incubated in 1 % BSA for 30 min. EdU-labeled cells were developed using an Alexa Fluor-555 Imaging Kit (Invitrogen, USA). The samples were additionally stained with 1 μg/ml DAPI (Sigma, USA) and mounted into Mowiol 4-88 with the addition of 50 mg/ml DABCO.

For correlative electron and light microscopy, cells were lysed in 1 % Triton X-100 for 1 min and then fixed in 2.5 % glutaraldehyde (both solutions contained 2 mM Tris-HCl and 3 mM CaCl₂). After extensive washing and 30 min incubation in a 1 % BSA solution, EdU was developed according to the Click-IT® EdU Alexa Fluor 555 Imaging Kit (Invitrogen, USA) protocol. The samples were embedded into Epon 812 (Sigma, USA) using a standard protocol for electron microscopy excluding osmium tetroxide, as it suppresses fluorescence. Ultrathin sections were stained with DAPI and photographed using a fluorescent microscope. Stacks of optical sections were deconvoluted with a constrained iterative algorithm using the AxioVision 3.1 software (Carl Zeiss, Germany). Subsequently, the sections were examined with electron microscope.

Results and Discussion

To detect replicating chromatin in PCC, EdU was added to the culture medium for 10 min, and the cells were subsequently harvested and fixed for the chromosome spread preparation. Fig. 1, A shows a general view of cells with PCC. The presence of replica-
Ultrastructural organization of replicating chromatin in prematurely condensed chromosomes

Fig. 1. Chromosome spread of S-phase PCC. DNA is colored in green, and the EdU label is in red. Graphs on the bottom show the relative brightness in both channels along the profile line (yellow) of the corresponding pictures. A – A general view of PCC plates with mitotic chromosomes; B – A chromatin fiber with short alternating condensed and replicating domains; C – A chromatin fiber with long condensed and coupled replication foci.

Fig. 2. Correlative microscopy of S-phase PCCs. Cells were permeabilized and fixed in 2 mM Tris-HCl with 3 mM CaCl₂. DNA is colored in green, and the EdU label is in red. A – A general view of S-phase PCC and mitotic chromosomes at the ultrastructural level; B – 500-nm chromatin complexes (green on merge) and replication zones (red on merge) with decondensed chromatin (i) and 80 and 130 nm globules (ii).
tion labeling indicated S-phase PCC. The relatively large inductor mitotic chromosomes displayed an organization that was typical for the spread samples. PCC consisted of chromatin globules and fibers of different thickness. There was no colocalization between condensed chromatin domains and replication foci. We analyzed linear fragments of S-phase PCC. Replicating foci are typically separated by the beads of condensed chromatin (Fig. 1, B), but some of them could be adjoined like beads on a string, not separated by the condensed chromatin. Importantly, there were many relatively long fragments of the condensed S-phase chromosomes, but the replicating regions were always divided into discrete replication foci (Fig. 1, C). In all cases, the brightness profile demonstrated almost no colocalization between the condensed chromatin and replication foci (Fig. 1, B, C graphs). Similar ‘beads on a string’ distribution of replication foci was reported in the cells with drug-induced PCC [15]. Our results are also in agreement with the early studies of DNA replication on PCC model [11–13].

The internal organization of replication foci cannot be revealed using light microscopy. To analyze the ultrastructural organization of replication foci, we used correlative light and electron microscopy. This approach allowed us to combine the cell images, which were subsequently photographed using fluorescent and electron microscopes (Fig. 2, A). At the ultrastructural level, S-phase PCC consisted of condensed chromatin complexes with average diameters of approximately 500 nm, which was half the thickness of inductor’s mitotic chromosomes from the same section. The 500 nm complexes consisted of 80 and 130 nm globules that were often joined to fibers (Fig. 2, B). Similar globules (so-called chromosomeres) were described in partially decondensed metaphase chromosomes [16]. There was no replication label in the 500 nm chromatin agglomerates as in the inductor cell chromosomes (Fig. 2, B). EdU-labeled regions contained two types of structures (Fig. 2, B): (i) decondensed chromatin, which occupied most of the replication foci area and (ii) loosely lying globules of 80 and 130 nm, similar to those found in condensed chromatin. Thus, the replicating chromatin regions were less densely packed compared to the non-replicating chromatin complexes. However, the correlative microscopy did not allow us to determine whether replication occurs in the decondensed chromatin or in the globules.

We used pre-embedded immunogold labeling to investigate the replication foci more accurately. Because EdU labeling is adapted for fluorescent detection only, we applied antibodies versus fluorochromes to reveal EdU nucleotide [17]. The PCC were strongly labeled with silver granules (Fig. 3, A), whereas almost no labeling was observed inside the inductor metaphase chromosomes (Fig. 3, B). The labeled regions (ultrastructural equivalents of repli-
cation foci) had irregular form and were preferentially localized on the periphery or between the condensed chromatin blocks (Fig. 3, C). Scant groups of gold particles were also visible inside the condensed chromatin but were typically found in small zones of decondensed material. The label inside the condensed chromatin was never detected.

It appears that, like in interphase nucleus [8, 9], PCC chromatin replicates in a decondensed state. We were unable to visualize any special structures that could be interpreted as «replication factories». There were, however, loosely packed 80 and 130 nm globules inside replication foci, but the globules of the same size and morphology were visualized inside the condensed (non-replicating) chromatin. It could thus be supposed that the structures such as the «replication factories» may only appear in the interphase cells in conditions of in vivo permeabilization, during which the nucleoplasm material aggregates with chromatin.

Conclusions

The DNA replication in S-phase PCC occurs in the decondensed chromatin. The replication foci at an ultrastructural level have an irregular form, and contain no special structures that could be interpreted as the «replication factories».

Funding

This work was supported by the Russian Science Foundation (project 14-15-00199).

REFERENCES

користували методи кореляційної електронної та світлової мікроскопії, а також імуноголдінг. Результати. Було показано, що реплікація в ПКХ відбувається в проміжках між доменами конденсованого хроматину. С допомогою кореляційної мікроскопії було встановлено, що в Реплікаційній фокусах присутній деконденсирований хроматин і глобули діаметром 80 і 130 нм, так само присутні в конденсованих нерепліціруючихся хроматінових доменах. Більш того, за допомогою імуноголдінга було показано, що реплікації ДНК в S-фазних ПКХ відбувається в пухкому хроматині на периферії плінних хроматінових доменів.

Висновки. Реплікація в ПКХ відбувається в деконденсованому хроматині, що сусідує з конденсованим хроматином без утворення спеціальних структур.

Ключові слова: хроматин, реплікація, вреждено конденсовані хромосоми (ПКХ), ультраструктура.

Ультраструктурна організація реплицирующегося хроматина в вреждено конденсованих хромосомах

Е. А. Арифулін

Цель. До сих пор нет единого мнения об ультраструктуре реплицирующегося хроматина. Мы проанализировали ультраструктурную организацию репликационного фокуса в клетках с врежденно конденсированными хромосомами (ПКХ). Методы. Для изучения хроматина на ультраструктурном уровне использовали методы корреляционной электронной и световой микроскопии, а также иммуноголдінг. Результаты. Було показано, что реплікація в ПКХ відбувається в проміжках між доменами конденсованого хроматину. С допомогою кореляційної мікроскопії було встановлено, що в репликаційних фокусах присутній деконденсирований хроматин і глобули діаметром 80 і 130 нм, так же присутні в конденсованих нерепліціруючихся хроматінових доменах. Более того, с помощью имуноголдінга было показано, что реплікації ДНК в S-фазних ПКХ відбувається в пухкому хроматині на периферії плінних хроматінових доменов. Выводы. Реплікація в ПКХ відбувається в деконденсованому хроматині, що сусідує з конденсованым хроматином без утворення спеціальних структур.

Ключевые слова: хроматин, реплікація, вреждено конденсовані хромосоми (ПКХ), ультраструктура.

Received 01.07.2015