Viruses and Cell

UDC 578

Restriction analysis and differentiation of Ukrainian strains of infectious bursal disease virus

A. S. Pastyria¹,², I. O. Sobko², V. P. Polischuk¹

¹ Educational and Scientific Center "Institute of Biology", Taras Shevchenko National University of Kyiv
64/13, Volodymyrska Str., Kyiv, Ukraine, 01601

² Center of Veterinary Diagnostics
25-A, Ushinskogo str., Kyiv, Ukraine
ann.pastyria@gmail.com

Infectious bursal disease virus (IBDV) had a great influence on poultry industry since emergence of very virulent strains in late 80th of XX century. Virus leads to immunosuppression and high mortality. There are many different vaccines against IBDV, so characterization of field strains is needed. **Aim.** To characterize and differentiate vaccine and field virus strains using the method of restriction analysis. **Methods.** RNA was extracted using sorption method, carried reverse transcription was carried out and PCR was performed using specific primers to VP2 gene. Obtained amplicons were digested with a set of restriction enzymes MvaI, MboI, SspI, BspMI, SacI, BstEII. **Results.** During the study restriction profile of 8 vaccine strains have been described and 120 bursa samples from infected birds have been analyzed. Most of the analyzed virus isolates had restriction profiles similar to vaccine strains. Vaccine strains belonging to the same group in terms of attenuation had a similar restriction profile. Four field isolates have been classified as vvIBDV. They were differentiated from vaccine strains by presence of SspI and lack BstEII sites. Restriction analysis is appropriate to differentiate vaccine and field IBDV isolates. **Conclusion.** This approach can be used to monitor vvIBDV in poultry farms.

Keywords: IBDV, field strains, vvIBDV, restriction analysis.

Introduction

Since the first outbreak of infectious bursal disease (IBD) it became one of the main problems in poultry industry. The infectious bursal disease virus (IBDV) has been discovered in the area of Gumboro, Delaware, USA. Since 1962 the classical strains of the virus have been prevalent in North and South America. In 1986 in central Europe new virus strains appeared [1]. They induced 70 % mortality of affected birds. During next 10 years such very virulent strains (vvIBDV) have been spread in Europe, Asia, Africa and South America. In
Ukraine, the emergence of vvIBDV was registered in 2000 [2, 3, 4]. Molecular mechanisms of emergence of new IBDV strains include mutations in hypervariable region of VP2 gene. The virus replicates in immature B-lymphocytes that develop in bursa of Fabricius, which leads to immunosuppression of infected animals [5, 6, 7].

The infectious bursal disease occurs primarily in poultry-producing areas thus leads to significant economic losses. IBDV is highly variable, that’s why new virus strains with different level of virulence appear. Therefore, to control IBDV many different types of vaccines have been developed. They include live attenuated, inactivated, immune complex, vectored, DNA vaccine and ex. [1, 8]. Live vaccines provide the best level of defense against IBD, so they are used in most of poultry farms in Ukraine [4, 8]. About 15 different live attenuated vaccines have been registered in Ukraine. They can be classified as mild, intermediate and intermediate-plus vaccines based on the level of attenuation and residual virulence for SPF chickens [8, 9]. The intermediate-plus vaccines are regularly applied to protect chickens against vvIBDV challenges, while mild and intermediate vaccines are used for protection against classical strains of the virus. The choice of vaccine depends on type of virus that circulates in particular farm. Therefore, characterization of field isolates is required for proper vaccination.

Several approaches have been developed to classify IBDV strains. Most of them are based on the nucleotide sequence analyses of VP2 gene, which encodes the main virus capsid protein [5, 9, 10]. The most efficient methods for diagnostics, molecular characterization and differentiation of IBDV field isolates include RT-PCR and restriction fragment length polymorphism (RFLP), nucleotide sequence analysis, and quantitative real time RT-PCR (qRT-PCR) [4, 5, 10].

The aim of the study was to characterize restriction profile of IBDV vaccine strains and field isolates, detected in Ukraine and to differentiate vaccine and field strains using restriction analysis.

Materials and Methods

During the study 120 samples of bursa tissues taken from chickens from 16 farms in 10 regions of Ukraine, which include Kyiv, Cherkasy, Lviv, Vinnytsia, Volyn, Dnipropetrovsk, Luhansk, Ternopil, Kharkiv and Crimea have been analyzed.

Vaccine strains used in study include mild (228E, GM97, MB/20) intermediate (V877, MB/5, Winterfield-2512) and intermediate-plus (MB, MB/3).

The RNA from vaccines and bursa tissues was extracted with the use of commercial kit Ribo-sorb (“Amplisens”, Russia) according to the manufacturer’s instruction. The obtained RNA has been used for the reverse transcription using the “Reverta” (“Amplisens”, Russia) Reverse Transcription Kit. The obtained cDNA have been used for PCR reaction. For nested PCR two pairs of oligonucleotide primers have been used designated Bur1F (5’-TCACCGTCTCTAGCCTTAC-3’), Bur1R (5’-TCAGGATTGGGATCAGC-3’), Bur2F (5’-CGCTATAGCTGCTTGACCCAAAAA-3’), Bur2R (5’-CTCACCCCAGCGACCGTAACGACG-3’). PCR conditions were described previously by Borodavka et al [4]. The amplification products have been electrophoretically separated
in the 1.5% agarose gel stained with the ethidium bromide and visualized by an ultraviolet transillumination. For the differentiation of IBDV vaccine strains and field isolates the obtained PCR products have been analyzed by digestion with restriction endonucleases MvaI, MboI, SspI, BspMI, SacI, BstEII (“Thermo”, USA) as recommended by a supplier.

Results and Discussion
During the study RNA of IBDV has been detected in 75 of total 120 analyzed samples of organs taken from infected birds.

Most of the current research of IBDV aimed to determine the nucleotide sequence of the VP2 gene of different strains [5, 10]. Comparing the sequences of vaccine and field isolates makes it possible to determine virus strain, but such research takes long time and requires big expenses. In terms of speed of diagnosis, we considered it appropriate to use restriction analysis as a method of differencing strains because it allows to quickly and accurately detect the difference between the vaccine and field virus strains by specific restriction sites.

Results of restriction analysis of strains 228E, GM97, V877 and MB correlate with previously described data by Borodavka et. al [4]. Restriction sites for strains MB/20, MB/5, MB/3 and Winterfield-2512 have been described for the first time.

Restriction profile of strain MB/20 was similar to that of strains 228E and GM97, and characterized by the presence of sites SacI, MvaI and MboI.

Strains V877 and MB/5 belonging to the group of intermediate vaccine strains, characterized by the presence of restriction sites for enzymes BstEII, MboI, SacI and MvaI.

For strain MB/3 5 restriction sites were identified for all restriction endonucleases used in the study, except for SacI. This restriction profile was similar to the previously described strain MB [4]. Cleavage of obtained amplicons of strains MB/3 and MB by SspI indicates that they have been attenuated from vvIBDV strains. Amplicons of MB/3 and MB strains have been also cleaved by BspMI enzyme. This restriction site have not been shown for other vaccine strains. Detection of BstEII restriction site in amplicons of vaccine strains MB and MB/3 can be used for differentiation from field vvIBDV.

Strain Winterfield-2512 have been characterized by a unique set of restriction sites, different from all other vaccine strained used

![Fig. 1. Restriction map of VP2 gene of Winterfield-2512 strain.](image)
Restriction analysis and differentiation of Ukrainian strains of infectious bursal disease virus

Table 1. Results of restriction analyses of VP2 gene of vaccine strains and vvIBDV strain UK661

<table>
<thead>
<tr>
<th>IBDV strain</th>
<th>Restriction enzyme and length of restriction fragments (nt)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BspMI</td>
</tr>
<tr>
<td>MB</td>
<td>102+450</td>
</tr>
<tr>
<td>V877</td>
<td>_</td>
</tr>
<tr>
<td>UK661</td>
<td>102+450</td>
</tr>
<tr>
<td>GM97</td>
<td>_</td>
</tr>
<tr>
<td>228E</td>
<td>_</td>
</tr>
<tr>
<td>MB/20</td>
<td>_</td>
</tr>
<tr>
<td>MB/3</td>
<td>102+450</td>
</tr>
<tr>
<td>MB/5</td>
<td>_</td>
</tr>
<tr>
<td>Winterfield-2512</td>
<td>_</td>
</tr>
</tbody>
</table>

Conclusion

We have described restriction profile of eight vaccine strains used in Ukraine and found that strains with the same level of residual virulence have similar restriction sites. However, for strain Winterfield-2512 unique restriction profile have been described that was different from all vaccine strains used in the study.

Based on restriction analyses for most of the analyzed virus isolates vaccine origin have been shown. These results show that tissue samples have been taken from vaccinated birds.

However for 4 isolates restriction sites similar to vvIDBV strain have been identified. This indicates that these isolates originated from field vvIDBV strains. Identification of

Fig. 2. Results of detection IBDV in bursa tissues samples: 1 – vaccine strains V877 and MB/5; 2 – vaccine strains GM97, 228E and MB/20; 3 – vaccine strains MB and MB/3; 4 – vvIDBV; 5 – virus undetected.
vvIBDV shows a disadvantaged situation on the farm concerning Gumboro disease.

REFERENCES:

Диференціювання штамів вірусу інфекційної бурсальної хвороби виявлених в Україні методом рестрикційного аналізу

А. С. Пастрия, І. О. Собко, В. П. Поліщук

Вірус інфекційної бурсальної хвороби (ІБХ) став актуальним для птахівництва з моменту появи високоінфекційних штамів в середині 80-рр XX ст. Вони призводять до імуносупресивного стану тварин та високої смертності. З огляду на велику різноманітність вакцин, необхідною є характеристика польових ізолятів, виявлених у господарстві. Мета. Охарактеризувати та диференціювати вакцинні та польові штами вірусу за допомогою методу рестрикційного аналізу. Методи. Виділення РНК здійснювали сорбційним методом, здійснювали постановку зворотної транскрипції та ПЛР із використанням спеціфічних праймерів до гена VP2. Отримані ампілони піддавали рестрикційному аналізу. Результати. У роботі було охарактеризовано рестрикційний профіль 8 вакцинних штамів та проаналізовано 120 зразків бурс відібраних від уражених вірусом ІБХ птахів. Більшість проаналізованих ізолятів відповідає рестрикційним профілям, які прийнято називати високоінфекційними штамами вірусу ІБХ.

Висновок. Рестрикційний аналіз дає змогу диферен-
ціювати вакцинні та польові ізоляти вірусу ІБХ. Даний підхід можна використовувати для моніторингу ситуації на господарстві за даним збудником.

Ключові слова: вірус ІБХ, польові штами, високовирулентні штами, рестрикційний аналіз.

Дифференціація штаммів вируса інфекційної бурсальної болезні виявлених в Україні методом рестрикційного аналізу

А. С. Пастыря, І. А. Собко, В. П. Полищук

Вірус інфекційної бурсальної болезні (ІББ) став актуальним для птицеводства з моменту появи високовирулентних штаммів в середині 80-х років XX століття. Вони призвели до іммуносупресивного стану, опосередкованого через імунодепресивну дію вірусу, що призводить до іммуносупрессії збільшення частки імуновільних клітин, що може призвести до виникнення різноманітних інфекцій. У різних громадянських групах віруса ІБХ верже іммунологічного стану, що призводить до імуноморфологічної дезорганізації. Виникнення різноманітних імуноморфологічних станів віруса ІБХ призводить до виникнення різноманітних імунологічних станів, що призводить до імуноморфологічної дезорганізації.

Мета. Охарактеризувати вакцинні та польові штами вируса ІБХ методом рестрикційного аналізу. РНК з образців экстрагували сорбціонним методом, здійснювали поста-новку обратної транскрипції та ПЦР з іспользов-анієм специфічних праймерів до гена VP2. Отриман-і в ампіліки подвергали рестрикцію MvaI, MboI, SspI, BspMI, SacI, BstEII. **Результати.** В роботі були охарактеризовані рестрикційні профілі 8 вакцинних штаммів і проаналізовано 120 образців бурс, отобраних від поражених бійців інфекційної бурсальної болезні. Больше бластості проаналізованих ізолятів за рестрикційним профілем були подобні вакцинним штамам. Вакцинні штами, принадлежащі к одній групі по рівні антенуації мали одинаковий рестрикційний профіль. Для чотирьох ізолятів було показано наличие сайтов SspI і відсутність сайтов BstEII, що дозволяє віднести їх до високовирулентних штаммів вируса ІБХ.

Висновки. Рестрикційний аналіз дозволяє диференціювати вакцинні та польові ізоляти вируса ІБХ. Даний підхід можна використовувати для моніторингу ситуації на господарстві за даним збудником.

Ключові слова: вірус ІБХ, польові штами, високовирулентні штами, рестрикційний аналіз.

Received 28.11.2016