

Kpamkue сообщения

УДК 577.214.623

ВСТРАПВАНИЕ ФРАГМЕНТА ДНК МЕЖДУ ДВУМЯ СНЛЬНЫМИ ОДНОНАПРАВЛЕННЫМИ ПРОМОТОРАМИ РЕКОМБИНАНТНОГО НИТЕВИДНОГО ФАГА *mp8tolr poB* УВЕЛИЧИВАЕТ ЕГО СТАБИЛЬНОСТЬ И ДЕЛАЕТ ВОЗМОЖНОЙ ПРОТИВОПОЛОЖНУЮ ОРИЕНТАЦИЮ В НЕМ КЛОНИРУЕМОГО ГЕНА *rpoB E. coli*

Е.Б. Патон, А. Н. Живолуп

Ранее мы сообщали [1, 2], что при клонировании BglII-фрагмента ДНК, содержащего ген гроВ Е. coli, в питевидном фаге M13, встранвание его происходит однонаправленно н приводит к образованию нестабильных рекомбинантных фагов. Предполагалось, что причной нестабильности и однонаправленности могло быть наличие двух сильных промоторов — lacUV5 п P_J, инициирующих транскринцию в одинаковом направлении. Удаление одного из них — Р_л — действительно повыенло стабильность рекомбинантных фагов на 30 % [3]. Известно [4], что последовательное встранвание сильного терминатора уранскрипции сделало возможным клонирование сильного промотора бактериофага Т5. Учизывая эго, в данной работе была предпринята нопытка повменть стабильность реномбинантных интевидных фагов со встроенным геном rpoB E. coli путем разделения промоторов lucUV5 и P_J фрагментом ДНК фага лямбда, содержащим терминатор транскрипции и копцевую часть гена оор-РНК [5]. Для выделения указанного фрагмента ДНК фага лямбда была использована рекомбинантная плазмида pBR322 со встроенным фрагментом EcoRI-G фага 2 [5], получениая пами из лаборатории Е. Д. Свердлова (ИБХ АН СССР). После препаративного гидролиза этой плазмиды рестриктазой EcoRI фрагмент EcoRI-G выделяли путем электрофореза в 0,8 %-ном агарозном геле, адсорбции на полоску Whatman DE 81 и последующей элюции с нее, как описано в [6]. Далее ДНК выделенного фрагмента расщепляли рестриктазой Sau3A1 и продукты гидролиза разделяли электрофорезом в 7 %-ном полнакриламидном геле (ПААГ). Элюцию из геля Sau3A1-G фрагмента (193 п. о.), содержащего концевую часть гена и терминатор транскрипции оор-РНК фага лямбда, проводили, как указано в [7]. Для встраивания вышеуказанного Sau3A1-фрагмента в репликативную форму (РФ) фага M13mp8 последнюю расщенляли рестриктазой EcoRI. Далее липкие концы mp8 и Sau3A1-фрагмента достраивали с помощью фрагмента Кленова ДНК-полимеразы E. coli и проводили лигирование их по стандартной методике [7]. После трансформации клеток E. coli 71-18 [8] аликвотами лигазной смеси клоны, содержащие рекомбинантные фаговые ДНК, отбирали путем гибридизации с радиоактивным зондом. Клетки E. coli из образовавшихся в результате трансформации фаговых бляшек переносили на чашки с LB [8] агаром, а затем на нитроцеллюлозные фильтры ВА 85/23 фирмы «Schleicher & Schüll», ФРГ. В качестве радиоактивного зонда использовали плазмиду pBR322 со встроенным EcoRI-фрагментом фага λ. Введение радноактивной метки проводили с помощью реакции ник-трансляции, используя стандартные растворы, ДНК-полимеразу и а-[22Р] дЦТФ (111 ТБк/ммоль) фирмы «Amersham» (Англия) по протоколу этой фирмы (Nick-translation kit). Прегибридизацию, гибридизацию с радноактивным зондом (106 имп.мин-1.мкг-1 инкубационной смеси) осуществляли при 42 °С в течение 18 ч. Фильтры отмывали при 68 °С. Вышеуказанные процедуры проводили, как указано в [7].

По результатам гибридизации было отобрано два клона *E. coli*, обладающих положительным сигналом. Для подтверждения наличия клонированного Sau3A1-фрагмента РФ фаговой ДНК, выделенную из этих клонов, расщепляли рестриктазой *Pvull* и

БИОПОЛИМЕРЫ И КЛЕТКА, 1986, т. 2, № 5

аналнинровали электрофорезом в 6 %-ном ПААГ. РФ векторного фага *тр8* содержит три сайта узнавания рестриктазой *РчиII* [9] и расщепляется сю на фрагменты 6835, 301 и 93 п. о. Включение *Sau3A1*-фрагмента (193 п. о.) приводит к увеличению длины *РчиII*-фрагмента с 301 до 494 п. о. Электрофорез продуктов расщенления выделенных рекомбинантных фагов *тр8₁₀* рестриктазой *РчиII* приведен на рис. 1. *РчиII*-фрагмент

494 п. о. имели оба рекомбинантных фага. Для определения ориентации встроенного Sau3A1-фрагмента мы использовали рестриктазу HindH, расщепляющую клонированный Sau3AI-фрагмент на субфрагменты длиной 120 и 73 п. о. Расшепление же HindH рекомбинантного фага приводит к присоединению к одному из этих фрагментов 18 п. о. участка векторной ДНК и образованию таким образом двух Hind-фрагментов величиной 7307 и 138 п. о., или 7354 и 91 п. о., в зависимости от ориептации встроенного фрагмента. Картина расщепления обоих рекомбинантных фагов $mp8_{l_0}$ рестриктазой HindH совпадала, соответствовала вриведенной на рис. 1, б и свидетельствовала об образовании HindH-фрагмента 38 п. о. Это означало, что направление транскринция оор-PHK фага 2. противоположно направлению транскринции, иниципруемо-

Рис. 1. Электрофорез в 6 (а) п 8 % (б) ПААГ продуктов расщепления рекомбинантных фаговых ДНК рестриктазами РенИ (1) и ПінцІІ (2). В качестве маркерной использована ДНК pBR322, расменленная рестриктазой BspRI (фрагменты: 587, 540, 504, 458, 431, 267, 231, 213, 192, 184, 124, 104, 89, 80, 64, 57 п. о.). Fig. 1. Electrophoresis in 6% (a) and 8% (б) PAAG of PvuII (1) and HindII (2) cleaved recombinant phage DNAs. BspRI-digested pBR322 was used as a marker (fragments: 587, 540, 504, 458, 438, 434, 267, 234, 213, 192, 184, 124, 104, 89, 80, 64, 57 bp).

Рис. 2. Две возможные ориентации *BgШ*-фрагмента в рекомбинантном фаге *пасРо* Рис. 2. Две возможные ориентации *BgШ*-фрагмента в рекомбинантном фаге *mp8t*₀/*rpoB*. *Sa*, *Sm*, *H*--сайты расшенления рестриктазами *SalGI*. *Smal* и *HindII*. *BB*-- место сочленения липких кощов *BamH1* (*mp8t*₀) и *BgШ1* (клонированного фрагмента). *Sau3A1*-фрагмент фага лямбда, клонированный в *mp8*, заштрихован. Fig. 2. Two possible orientations of the *BgIII* (ragment in recombinant *mp8t*₀/*rpoB* phage.

Sa

Fig. 2. Two possible orientations of the *BgHI* fragment in recombinant $mp\delta_{t_0}/rpoB$ phage. Sa, Sm, H—sites of SalGI, SmaI and HindHI digestion. BB—a site of conjuction of BamHI ($mp\delta_{t_0}$) and BgHI (cloned fragment) steaky ends. The Sau3AI-fragment of lamb-da phage cloned into $mp\delta$ is hatched.

му на промоторе lacUV5 фага *mp8*, тем не менее нам представлялась интересной попытка клопирования в полученном рекомбинантном фаге $mp8_{I_0}$ Bg/II-фрагмента космиды pJC703 [10], содержащего ген rpoB E. coli. Расшепление векторной ДНК рестриктазой BamHI и лигирование ее с вышеуказанным BgHI-фрагментом проводили, как описано ранее [1]. После трансформации клеток E. coli отобрали один рифампнициустойчивый клон и исследовали его стабильность и орнентацию встроенного BgHI-фрагмента. Для полтверждения наличия встроенного BgHI-фрагмента н определения его орнентации выделенную рекомбинантную ДНК расщепляли растриктазами Smal и SalGI. Расположение сайтов узнавания этими рестриктазами при двух альтернативных положениях клопированного BgHI-фрагмента показано на рис. 2. Как можно было определить по картиве электрофореза в 1 %-ном агарозном геле продуктов расщепления Smal, наблюдалось образование фрагмента величиной ~3,5-10⁶, а в случае SalGI — ~1,3-10⁶ (рис. 3). Учитывая асимметричное расположение сайтов расщепления этими рестриктазами на клонированном Bglll-фрагменте, наблюдаемая картина соответствовала такой ориентации, при которой направление транскрипции, инициируемой на промоторах lacUV5 и Р_J, противоположно.

Определение стабильности сконструированного рекомбинантного фага, проведенное, как описано ранее [1], показало, что она возросла до 93 %.

Таким образом, конструирование рекомбинантного питевидного фага mp8 te, содержащего Sau3A1-фрагмент фага 2 с терминатором транскрипции оор-РНК, и последующее клонирование в нем BglII-фрагмента pJC703, включающего ген rpoB, позволило повысить стабильность рекомбинантных фагов mp81,/rpoB и встроить указанный BgllI-фрагмент в ориептации, противоположной наблюдаемой ранее. Оба обнаруженных факта согласуются с предположением о влиянии двух сильных однонаправленных промоторов на стабильность рекомбинантных фагов и ориентацию в них клоппруемого Bglll-фрагмента.

Рис. 3. Электрофорез в 1%-ном агарозном геле продуктов рас-щепления рекомбинатного фага *mp8*₁₀/rpoB рестриктазами SalGI (1) и Smal (2). В качестве маркера использована космида *pIC703*, (3), расщепленная рестриктазой *EcoRI* (фрагменты: 7,0; 4,2; 1,82; 1,5; 1,35; 0,75 и 0,69 Мд).

Fig. 3. 1 % agarose gel electrophoresis of SalGI (1) and Smal (2) digested recombinant phase $mp8t_o/rpoB$. pIC703 cosmid cleaved by EcoRI (fragments: 7.0, 4.2, 1.82, 1.5, 1.35, 0.75, 0.69 Md) was used as a marker (3).

INSERTION OF A DNA FRAGMENT BETWEEN TWO STRONG SIMILARLY ORIENTED PROMOTERS OF RECOMBINANT FILAMENTOUS PHAGE mp8_{to}/rpoB INCREASES ITS STABILITY AND MAKES POSSIBLE AN OPPOSITE ORIENTATION OF THE CLONED E. coli rpoB GENE

E. B. Paton, A. N. Zhivolup

Institute of Molecular Biology and Genetics, Academy of Sciences of the Ukrainian SSR, Kiev

Summary

A fragment of λ phage DNA containing terminator of transcription (t₀) and terminal part of the oop-RNA gene was inserted into the polylinker area of M13 mp8 filamentous phage. The obtained phage was used to clone a BgIII fragment of pJC703 cosmid, containing E. coli genes rpII, rpIL and rpoB together with promoters P_J and P_B . Stability of the obtained mp8, /rpoB recombinant phages increased up to 93 % and an orientation of the cloned BglII-fragment opposite to the previously observed one became possible.

- 1. Патон Е. Б., Вудмаска М. И., Свердлов Е. Д. Однонаправленная ориентация гена пов Е. сой при клопировании в питевидные фаги M13mp8 и M13WB2348 // Биоорган. химия. — 1984.—10, № 11. — С. 1544—1547.
 Патон Е. Б., Вудмаска М. И., Свердлов Е. Д. Однопаправленная ориентация гена
- гров Е. сой, клонированного в интевидные фаги M13 // Макромолекулы в функцио-нирующей клетке: Тез. докл. IV симпоз. СССР Италия. Киев, 1984. С. 89.
 Патон Е. Б., Вудмаска М. И., Свердлов Е. Д. Присутствие собственного промотора
- Патон Е. Б., Вудмаска М. И., Свердлов Е. Д. Присутствие собственного промотора гроВ-гена синжает стабильность рекомбинантных однонитевых фагов, содержащих этот ген // Биополимеры и клетка. 1985.—1, № 3. С. 160—162.
 Cloning and analysis of strong promoters is made possible by the downstream pla-cement of a RNA termination signal / R. Gentz, A. Langner, A. C. Y. Chang et al. // Proc. Nat. Acad. Sci. USA. 1981.—78, N 8. P. 4936—4940.
 Primary structure of an EcoRI fragment of λ imm 434 DNA containing regions cl-cro of phage 434 and cl1-o of phage lambda / Yu. A. Ovchinnikov, S. O. Guryev, A. S. Krayev et al. // Genc. 1979.—6, N 2. P. 235—249.
 A reliable method for the recovery of DNA fragments from agarose and acrylamide

БИОПОЛИМЕРЫ И КЛЕТКА, 1986, т. 2, № 5

gels / I. Dretgen, M. Bellard, P. Sassone-Corsi, P. Chambon // Anal. Biochem.- 1981.-

- 112. N 2. P. 295 298.
 7. Maniatis T., Fritsch E. F., Sambrook J. Molecular cloning a laboratory manual. New York: Cold Spring Harbor, 1982.—545 р.
 8. Миллер Дж. Эксперименты в молекулярной генетике. М.: Мир. 1976.—436 с.
 9. Рам Б. Т. Tab. Р. Nucleotide социона and сепоте organization of filamentous bacte-

- 9. Beck E., Zink B. Nucleotide sequence and genome organization of filamentous bacteriophages f1 and fd // Gene. -- 1981.--16, N 1. -- P. 35-58.
 10. Collins J. Deletions, insertions and rearrangements affecting rpoB gene expression // Mol. and Gen. Genet. -- 1979.--173, N 1. -- P. 217--220.

Ин-т молекуляр. биологин и генетики АН УССР, Киев

Получено 15.02.86

- Ochi K. Protoplast fusion // Molecular breeding and genetics of applied microorga-nisms / Eds K. Sakaguchi, M. Okanishi. New York : Acad. press, 1980. P. 88—94.
 Lurquin P., Sheely R., Rao N. Quantitative aspects of nucleic acid sequestration in large liposomes and their effects on plant protoplast // FEBS Lett. 1981.—25, N 2.— P. 183--187.
- Weisman G., Cohen C., Hoffstein S. Introduction of enzymes by means of liposomes, into non-phagocytic human cells in vitro // Biochim. et biophys. acta. 1977.-498, N 2. P. 375-385.
- 22. Маргулис Л. Б., Нейфах А. А. Взаимодействие липосом с клетками. Липосомы с жидкокристаллической мембраной // Успехи соврем. биологии. — 1982.—93, № 2. — C. 211 - 229.

Ин-т микробиологии и вирусологии им. Д. К. Заболотного АН УССР, Киев

Получено 22.07.85

БИОПОЛИМЕРЫ И КЛЕТКА, 1986, т. 2, № 5