Biopolym. Cell. 2007; 23(2):122-129.
Молекулярная биофизика
Электрофоретическое исследование конформационных переходов в поли(G) под действием моновалентных катионов
1Зарудная М. И., 1Степанюгин А. В., 1Потягайло А. Л., 1Говорун Д. Н.
  1. Институт молекулярной биологии и генетики НАН Украины
    ул. Академика Заболотного, 150, Киев, Украина, 03680

Abstract

Впервые методом электрофореза изучены конформационные переходы в поли(G) под действием соли. Показано, что при концентрации моновалентных катионов > 10 мМ наблюдается только одна зона полимера, соответствующая его четырехцепочечной форме. При более низких концен­трациях определяются две перекрывающиеся зоны Медленнее мигрирующая зона соответствует четырехцепочечной форме поли(G), а быстрее мигрирующая — одноцепочечной. Получены элект­ронные спектры поглощения ряда гомополирибонуклеотидов, окрашенных толуидиновым голубым (ТГ) в агарозных гелях. Выявлено, что форма спектра зависит как от гомополимера, так и от его конформации. Δλmax спектров поглощения ТГ в комплексе с одно- и четырехцепочечной формами поли(G) составляет примерно 20 нм.
Keywords: поли(G), конформационные переходы гомополирибонуклеотидов, электрофорез, толуидиновый голубой, электронные спектры поглощения

References

[1] Zarudna MI, Hovorun DM. Self-associated homopolymer tracts of cellular RNAs: physical mechanisms of formation and function. Physics of the Alive. 1999; 7(2): 38-52.
[2] Saenger W. Principles of nucleic acid structure. New York: Springer, 1984; 556 p.
[3] Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Hovorun DM. Auxiliary elements of mammalian pre-mRNAs polyadenylation signals. Biopolym Cell. 2002; 18(6):500-17.
[4] Matunis MJ, Xing J, Dreyfuss G. The hnRNP F protein: unique primary structure, nucleic acid-binding properties, and subcellular localization. Nucleic Acids Res. 1994;22(6):1059-67.
[5] Gwack Y, Kim DW, Han JH, Choe J. Characterization of RNA binding activity and RNA helicase activity of the hepatitis C virus NS3 protein. Biochem Biophys Res Commun. 1996;225(2):654-9.
[6] Achsel T, Stark H, L?hrmann R. The Sm domain is an ancient RNA-binding motif with oligo(U) specificity. Proc Natl Acad Sci U S A. 2001;98(7):3685-9.
[7] Zarudnaya MI, Zheltovsky NV. Determination of association constants for the interaction between homopolyribonucleotides and lysine derivative by agarose gel electrophoresis. Mol Biol (Mosk). 1989; 23(1):215–224.
[8] Zarudnaya MI, Zheltovsky NV. Affinity electrophoresis study on the interaction between homopolyribonucleotides and divalent lysine complex. Mol Biol (Mosk). 1992; 26(1):110-7.
[9] Zarudnaia MI, ZHeltovski? NV. [Electrophoretic study of conformational transitions in poly(A) at acid pHs]. Mol Biol (Mosk). 1995;29(5):1040-7.
[10] Zarudnaia MI. [Study of conformational transitions in poly(A) using the buffer capacity method]. Mol Biol (Mosk). 1998;32(3):508-14.
[11] Zarudnaya MI, Potyahaylo AL, Hovorun DM. Conformational transitions of poly(C) and poly(dC): study by the proton buffer capacity method. Biopolym Cell. 2000; 16(6):495-504.
[12] Zarudnaya MI, Samijlenko SP, Potyahaylo AL, Hovorun DM. Structural transitions in polycytidylic acid: proton buffer capacity data. Nucleosides Nucleotides Nucleic Acids. 2002;21(2):125-37.
[13] Fresco JR, Massoulie J. Polynucleotides. V. Helix-coil transition of polyriboguanylic acid. J Am Chem Soc. 1963;85(9):1352–3.
[14] Pochon F, Michelson AM. Polynucleotides. VI. Interaction between polyguanylic acid and polycytidylic acid. Proc Natl Acad Sci U S A. 1965;53(6):1425-30.
[15] Lesnik EA, Kochkina IM, Tikhonenko AS, Varshavski? IaM. [Structure of polyriboguanylic acid in solution]. Mol Biol (Mosk). 1980;14(4):820-9.
[16] Lesnik EA, Maslova RN, Varshavski? IaM. [Influence of ionic strength and temperature on the structure of poly(G) in solution 1H replaced by 3H exchange method]. Mol Biol (Mosk). 1981;15(1):161-6.
[17] Souleil C, Panijel J. Immunochemistry of polyribonucleotides. Study of polyriboinosinic and polyriboguanylic acids. Biochemistry. 1968;7(1):7-13.
[18] Rice J, Lafleur L, Medeiros GC, Thomas GJ. Raman studies of nucleic acids. IX: A salt-induced structural transition in poly(rG). J Raman Spectrosc. 1973;1(2):207–15.
[19] Mergny JL, De Cian A, Ghelab A, Sacc? B, Lacroix L. Kinetics of tetramolecular quadruplexes. Nucleic Acids Res. 2005;33(1):81-94.
[20] Zarudnaya MI, Stepanyugin AV, Potyahaylo AL, Hovorun DM. Conformational transitions in homopolyribonucleotides under electrophoresis. IV Congress of Ukrainian Biophysical Society: Abstracts book. Donets'k, 2006:295-6.
[21] Antony T, Atreyi M, Rao MV. Spectroscopic studies on the binding of methylene blue to poly(riboadenylic acid). J Biomol Struct Dyn. 1993;11(1):67-81.
[22] Imae T, Hayashi S, Ikeda S, Sakaki T. Interaction between acridine orange and polyriboadenylic acid. Int J Biol Macromol. 1981;3(4):259–66.
[23] Imae T, Hayashi S, Ikeda S. Calculation of induced circular dichroism of acridine orange-poly(riboadenylic acid) complexes and confirmation of their structure. Macromolecules. 1987;20(3):589–97.