Biopolym. Cell. 2009; 25(1):27-38.
Обзоры
Клеточные и молекулярно-генетические механизмы симбиоза и ассоциативного взаимодействия микроорганизмов с растениями в ризосфере
1Лёшина Л. Г.
  1. Институт биоорганической химии и нефтехимии НАН Украины
    ул. Мурманская, 1, Киев, Украина, 02094

Abstract

Рассмотрены результаты исследований по симбиотическому и ассоциативному взаимодействию микроорганизмов и растений в ризосфере. Особое внимание уделено процессу контактной ассоциации клеток микроорганизмов и тканей растений с участием конкретных молекулярных структур, в ходе которого доминантная роль отводится белково-углеводным взаимоотношениям. Отмечены общие черты и различия при формировании арбускулярной микоризы, бобово-ризобиального симбиоза и ассоциации небобовых растений и азоспирилл.
Keywords: симбиоз, ассоциативное взаимодействие, арбускулярная микориза, ризобии, азоспириллы

References

[1] Tetz V. V. Pangenom. Tsitologiia. 2003;45(5):526-31.
[2] Provorov N. A., Borisov A. Y., Tikhonovich I. A. Comparative genetics and evolutionary morphology of symbioses formed by plants with nitrogen-fixing microbes and endomycorrhizal fungi. Zh Obshch Biol. 2002;63(6):451-72.
[3] Kent A. D., Triplett E. W. Microbial communities and their interaction in soil and rhizosphere ecosystems Annu. Rev. Microbiol 2002 56, N 1:211–236.
[4] Lutova L. A., Provorov N. A., Tikhodeev O. N., Tikhonovich I. A., Khodzhaiova L. T., Shishkova S. O. Genetics of plant development. Ed. S. G. Inge-Vechtomov M.: Nauka, 2000 539 p.
[5] Hurek T., Reinhold-Hurek B. Azoarcsus sp. strain BH72 as a model for nitrogen-fixing grass endophytes J. Biotechnol 2003 106, N 2/3:169–178.
[6] Ryu C. M., Farag M. A., Hu C. H., Reddy M. S., Wei H. X., Pare P. W., Kloepper J. W. Bacterial volatiles promote growth in Arabidopsis Proc. Natl. Acad. Sci. USA 2003 100, N 8:4927–4932.
[7] Somers E., Vanderleyden J., Srinivasan M. Rhizosphere bacterial signalling: a love parade beneath our feet Crit. Rev. Microbiol 2004 30:205–240.
[8] Krishnan H. B., Bennett J. O. Rhizobium-legume symbioses: molecular signals elaborated by rhizobia that are important for nodulation Plant-Associated Bacteria. Ed. S. S. Gnanamanickam Amsterdam: Springer, 2006:57–104.
[9] Cooper J. E. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue J. Appl. Microbiol 2007 103 P. 1355–1365.
[10] Wall L. G. The actinorhizal symbiosis. J Plant Growth Regul. 2000;19(2):167-182.
[11] Kuhn G., Hijri M., Sanders I. R. Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi Nature 2001 414:745–748.
[12] Pawlowska T. E., Taylor J. W. Organization of genetic variation in individuals of arbuscular mycorrhizal fungi Nature 2004 427:733–737.
[13] Harrison M. J. The arbuscular mycorrhizal symbiosis Plant-microbe interaction. Eds G. Stacey, N. T. Keen New York: Chapman and Hall, 1997:1–34.
[14] Katzy E. I. Molecular-genetic processes that affect the associative interaction of soil bacteria with plants. Ed. V. V. Ignatov Saratov: SGU, 2003–172 p.
[15] Strack D., Fester T., Hause B., Schliemann W., Walter M. H. Arbuscular mycorrhiza: biological, chemical, and molecular aspects J. Chem. Ecol 2003 29:1955–1979.
[16] Bago B., Pfeffer P. E., Shachar-Hill Y. Carbon metabolism and transport in arbuscular mycorrhizas Plant Physiol 2000 124:949–958.
[17] Smith S. E., Dickson S., Smith F. A. Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Austr. J. Plant Physiol 2001 28:683–694.
[18] Day D. A., Kaiser B. N., Thomson R., Udvardi M. K., Moreau S., Puppo A. Nutrient transport across symbiotic membranes from legume nodules. Austr. J. Plant Physiol 2001 28 P. 667–674.
[19] Parniske M. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease? Curr. Opin. Plant Biol 2000 3:320–328.
[20] Genre A., Chabaud M., Timmers T., Bonfante P., Barker D. G. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection Plant Cell 2005 17:3489–3499.
[21] Lum M. R., Hirsch A. M. Roots and their symbiotic microbes: strategies to obtain nitrogen and phosphorus in a nutrientlimiting environment J. Plant Growth Regul 2002 21 P. 368–382.
[22] Parniske M. Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr. Opin. Plant Biol 2004 7:414–421.
[23] Limpens E., Bisseling T. Signaling in symbiosis Curr. Opin. Plant Biol 2003 6:343–350.
[24] Geurts R., Fedorova E., Bisseling T. Nod-factor signaling genes and their function in the early stages of Rhizobium infection Curr. Opin. Plant Biol 2005 8:346–352.
[25] Stacey G., Libault M., Brechenmacher L., Wan J., May G. D. Genetics and functional genomics of legume nodulation Curr. Opin. Plant Biol 2006 9:110–121.
[26] Kistner C., Winzer T., Pitzschke A., Mulder L., Sato S., Kaneko T., Tabata S., Sandal N., Stougaard J., Webb K. J., Szczyglowski K., Parniske M. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis Plant Cell 2005 17 P. 2217–2229.
[27] Gherbi H., Markmann K., Svistoonoff S., Estevan J., Autran D., Giczey G., Auguy F., Peret B., Laplaze L., Franche C., Parniske M., Bogusz D. SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankiabacteria Proc. Natl. Acad. Sci. USA 2008 105, N 12:4928–4932.
[28] Xie Z.-P., Muller J., Wiemken A., Broughton W. J., Boller T. Nod factors and tri-iodobenzoic acid stimulate mycorrhizal colonization and affect carbohydrate partitioning in mycorrhizal roots of Lablab purpureus New Phytologist 1997 139:361–366.
[29] Borisov A. Y., Jacobi L. M., Lebsky V. K., Morzhina E. V., Tsyganov V. E., Voroshilova V. A., Tikhonovich I. A. Pea (Pisum sativum L.) genetic system controlling development of nitrogen-fixing nodules and arbuscular mycorrhiza New approaches and techniques in breeding sustainable fodder crops and amenity grasses. Eds N. A. Provorov, I. A. Tikhonovich, F. Veronesi St-Petersburg: VIR publ., 2000 P. 231–236.
[30] Jacobi L. M., Zubkova L. A., Barmicheva E. M., Tsyganov V. E., Borisov A. Y., Tikhonovich I. A. Effect of mutations in the pea genes Sym33 and Sym40. II. Dynamics of arbuscule development and turnover Mycorrhiza 2003 13:9–16.
[31] Staehelin C., Charon C., Boller T., Crespi M., Kondorosi A. Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules Proc. Nat. Acad. Sci. USA 2001 98:15366–15371.
[32] Solaiman M. Z., Senoo K., Kawaguchi M., Imaizumi-Anraku H., Akao S., Tanaka A., Obata H. Characterization of mycorrhizas formed by Glomus sp. on root of hypernodulating mutants of Lotus japonicus J. Plant Res 2000 113:443– 448.
[33] Demchenko K., Winzer T., Stougaard J., Parniske M., Pawlowski K. Distinct roles of L. japonicus SYMRK and SYM15 in root colonization and arbuscule formation New Phytologist 2004 163:381–392.
[34] Novero M., Faccio A., Genre A., Stougaard J., Webb K. J., Mulder L., Parniske M., Bonfante P. Dual requirement of the LjSym4 gene for mycorrhizal development in epidermal and cortical cells of Lotus japonicus roots New Phytologist 2002 154:741–749.
[35] Franken P., Requena N. Analysis of expression in arbuscular mycorrhizas: new approaches and challenges New Phytologist 2001 150:517–523.
[36] Hohnjec N., Henckel K., Bekel T., Gouzy J., Dondrup M., Goesmann A., Kuster H. Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula Funct. Plant Biol 2006 33:737–748.
[37] Borisov A. Y., Danilova T. N., Koroleva T. A., Naumkina T. S., Pavlova Z. B., Pinaev A. G., Shtark O. Y., Tsyganov V. E., Voroshilova V. A., Zhernakov A. I., Zhukov V. A., Tikhonovich I. A. Pea (Pisum sativum L.) regulatory genes controlling development of nitrogen-fixing nodule and arbuscular mycorrhiza: fundamentals and application. Biologia 2004 59, N 13:137–144.
[38] Shaul O., David R., Sinvani G., Ginzberg I., Ganon D., Wininger S., Ben-Dor B., Badani H., Ovdat N., Kapulnik Y. Plant defense responses during arbuscular mycorrhiza symbiosis Current advances in mycorrhizal research. Eds G. K. Podila, D. D. Douds St. Paul: Amer. Phytopathol. Soc. press, 2000:61–68.
[39] Yedidia I., Benhamou N., Kapulnik Y., Chet I. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite T. harzianum strain T-203 Plant Physiol. Biochem 2000 38 P. 1–11.
[40] Rodriguez-Navarro D. N., Dardanelli M. S., Ruiz-Sainz J. E. Attachment of bacteria to the roots of higher plants FEMS Microbiol. Lett 2007 272, N 2:127–136.
[41] Denarie J., Debell F., Truche G., Prome J.-C. Rhizobium and legume nodulation: a molecular dialogue New horizons in nitrogen fixation. Eds R. Palacios, J. Mora, W. E. Newton Dordrecht: Kluwer, 1993:19–30.
[42] Roth L. E., Stacey G. Bacterium release into host cells of nitrogen-fixing soybean nodules: the symbiosome membrane comes from three sources. Eur. J. Cell. Biol. 1989; 49(1):13–23.
[43] Quispel A. Evolutionary aspects of symbiotic adaptations: Rhizobium's contribution to evolution of associations The Rhizobiaceae. Eds H. Spaink, A. Konodorosi, P. J. J. Hooykaas Dordrecht; Boston; London: Kluwer Acad. publ., 1998:487–507.
[44] Ljones T. Nitrogen fixation and bioenergetics: the role of ATP in nitrogenase catalysis FEBS Lett 1979 98, N 1 P. 1–8.
[45] Bertsova Y. V., Demin O. V., Bogachev A. V. The respiratory protection of the nitrogenase complex in Azotobacter vinelandii. Uspekhi Biol. Khimmii. 2005; 45:205–234.
[46] Kaminski P. A., Batut J., Boistard P. A survey of symbiotic nitrogen fixation by rhizobia The Rhizobiaceae. Eds H. Spaink, A. Konodorosi, P. J. J. Hooykaas Dordrecht; Boston; London: Kluwer Acad. publ., 1998:431–460.
[47] Aoki T., Akashi T., Ayab S. Flavonoids of leguminous plants: structure, biological activity, and biosynthesis J. Plant Res 2000 113:475–488.
[48] Subramanian S., Stacey G., Oliver Y. Distinct, crucial roles of flavonoids during legume nodulation Trends Plant Sci 2007 12, N 7:282–285
[49] Begum A., Leibovitch S., Migner P., Zhang F. Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments J. Exp. Bot 2001 52:1537–1543
[50] van Brussel A. A. N., Recourt K., Pees E., Spaink H. P., Tak T., Wijffelman C., Kijne J., Lugtenberg B. J. J. A biovarspecific signal of Rhizobium leguminosarum bv. viciae induces increased nodulation gene-inducing activity in root exudate of Vicia sativa subsp. Nigra. J. Bacteriol. 1990; 172(9):5394–5401.
[51] Schmidt P., Broughton W., Werner D. Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudates Mol. PlantMicrobe Interact 1994 7:384–390.
[52] Cooper J. E. Multiple responses of rhizobia to flavonoids during legume root infection Adv. Bot. Res 2004 41 P. 1–62.
[53] Oldroyd G. E. D. Nodules and hormones Science 2007 315:52–53.
[54] Subramanian S., Stacey G., Yu O. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum Plant J 2006 48:261–273.
[55] Lerouge P., Faucher C., Maillet F., Truchet G., Prome J. C., Denarie J. Symbiotic host specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal Nature 1990 344, N 6268:781–784.
[56] Ovtsyna A. O., Tikhonovich I. A. Structure, functions and possibility of the practical application of the signal molecules, initiating development rhizobium-legume symbioses. Ecol. Genetika. 2004; 1:36–46.
[57] Chen X.-C., Feng J., Hou B.-H., Li F.-Q., Li Q., Hong G.-F. Modulating DNA bending affects NodD-mediated transcriptional control in Rhizobium leguminosarum Nucl. Acids Res 2005 33:2540–2548.
[58] Peck M. C., Fisher R. F., Long S. R. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti J. Bacteriol 2006 188:5417–5427.
[59] Kobayashi H., Naciri-Graven Y., Broughton W. J., Perret X. Flavonoids induce temporal shifts in gene expression of nod-box controlled loci in Rhizobium sp. NGR234 Mol. Microbiol 2004 51:335–347.
[60] Dixon R., Kahn D. Genetic regulation of biological nitrogen fixation Nat. Rev. Microbiol 2004 2:621–631.
[61] Lee S., Reth A., Meletzus D., Sevilla M., Kennedy C. Characterization of a major cluster of nif, fix, and associated genes in a sugarcane endophyte, Acetobacter diazotrophicus J. Bacteriol 2000 182, N 24 P. 7088–7091.
[62] Yahyaoui F. E., Kuster H., Ben Amor B., Hohnjec N., Puhler A., Becker A., Gouzy J., Vernie T., Gough C., Niebel A., Godiard L., Gamas P. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program Plant Physiol 2004 136:3159–3176.
[63] Gagnon H., Ibrahim R. K. Aldonic acids: a novel family of nod gene inducers of Mesorhizobium loti, Rhizobium lupini and Sinorhizobium meliloti Mol. Plant-Microbe Interact 1998 11:988–998.
[64] Mabood F., Souleimanov A., Khan W., Smith D. Jasmonates induce Nod factor production by Bradyrhizobium japonicum Plant Physiol. Biochem 2006 44:759–765.
[65] Yuen J. P. Y., Cassini S. T., De Oliveira T. T., Nagem T. J., Stacey G. Xanthone induction of nod gene expression in Bradyrhizobium japonicum. Symbiosis. 1995; 19:131–140.
[66] D'Haeze W., Holsters M. Surface polysaccharides enable bacteria to evade plant immunity Trends Microbiol 2004 12:555–561.
[67] Fujishige N. A., Kapadia N. N., De Hoff P. L., Hirsch A. M. Investigations of Rhizobium biofilm formation FEMS Microbiol. Ecol 2006 56:195–206.
[68] Laus M. C., Logman T. J., Lamers G. E., van Brusel A. A. N., Carlson R., Kijne J. W. A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin Mol. Microbiol 2006 59:1704–1713.
[69] Rudiger H., Gabius H. J. Plant lectins: occurrence, biochemistry, functions and applications Glycoconj. J 2001 18:589–613.
[70] Karpunina L. V., Smiyan M. S., Kosenko L. V. The effect of the carbohydrate components of pea roots on the enzymatic activity of the surface agglutinins of Rhizobium leguminosarum bv. viciae 252. Microbiology. 2004; 73(4):461–464.
[71] Antonyuk L. P., Ignatov V. V. The role of wheat germ agglutinin in plant–bacteria interactions: a hypothesis and the evidence in its support Russ. J. Plant Physiol 2001 48, N 3:427–433.
[72] Theunis M., Kobayashi H., Broughton W. J., Prinsen E. Flavonoids, NodD1, NodD2, and nod box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234 Mol. Plant-Microbe Interact 2004 17 P. 1153–1161.
[73] Kannenberg E., Perzl M., Hartner T. The occurrence of hopanoid lipids in Bradyrhizobium bacteria FEMS Microbiol. Lett 1995 127:255–262.
[74] Matiru V. N., Dakora F. D. Xylem transport and shoot accumulation of lumichrome, a newly recognized rhizobial signal, alters root respiration, stomatal conductance, leaf transpiration and photosynthetic rates in legumes and cereals New Phytologist 2005 165:847–855.
[75] Molecular bases of the relationships between associative microorganisms and plants. Ed. V. V. Ignatov M.: Nauka, 2005 262 p.
[76] Kravchenko L. V., Azarova T. S., Makarova N. M., Tikhonovich I. A. The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria Microbiology 2004 73, N 2:195–198.
[77] Penrose D. M., Glick B. R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria.Physiol Plant. 2003;118(1):10-15.
[78] Kloepper J. W., Ryu Ch.-M., Zhang Sh. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 2004 94, N 11:1259–1266.
[79] Loon L. C. Plant responses to plant growth-promoting rhizobacteria Eur. J. Plant Pathol 2007 119, N 3:243–254.
[80] Jetiyanon K., Kloepper J. W. Mixtures of plant growth-promoting rhizobacteria for induction of systemic resistance against multiple plant diseases Biol. Control 2002 24, N 3:285–291.
[81] Cartieaux F., Thibaud M.-C., Zimmerli L., Lessard S., Sarrobert C., David P., Gerbaud A., Robaglia C., Somerville S., Nussaume L. Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance Plant J 2003 36, N 2:177–188.
[82] Whipps J. M. Microbial interactions and biocontrol in the rhizosphere J. Exp. Bot 2001 52, Special issue:487– 511.
[83] Mehnaz S., Weselowski B., Lazarovits G. Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere Int. J. Syst. Evol. Microbiol 2007 57 P. 620–624.
[84] Zhu G. Y., Dobbelaere S., Vanderleyden J. Use of green fluorescent protein to visualized rice root colonization by Azospirillum irakense and A. brasilense Funct. Plant Biol 2002 29:1279–1285.
[85] Michiels K., Croes C. L., Vanderleyden J. Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots J. Gen. Microbiol 1991 137:2241–2246.
[86] Katzy E. I. Molecular-genetic aspects of formation at Azospirillum brasilense O-specific polysaccharides, motor organells and extracells metabolite important for this bacteriaplant interactions: Thesis. E Dr. biol. sci M., 2002 388 p.
[87] Katzy E. I. Characterization of genes identified in the 120MDa plasmid of an Azospirillum brasilense Sp245 mutant defective in polar flagellation and swarming Russ. J. Genetics 2002 38, N 1:22–32.
[88] Burdman S., Okon Y., Jurkevitch E. Surface characteristics of Azospirillum brasilense in relation to cell aggregation and attachment to plant roots Crit. Rev. Microbiol 2000 26, N 2:91–110.
[89] de Oliveira Pinheiro R., Boddey L. H., James E. K., Sprent J. I., Boddey R. M. Adsorption and anchoring of Azospirillum strains to roots of wheat seedlings Plant and Soil 2002 246, N 2 P. 151–166.
[90] Karpati E., Kiss P., Pony T., Fendrik I., De Zamaroczy M., Orosz L. Interaction of Azospirillum lipoferum with wheat germ agglutinin stimulates nitrogen fixation. J. Bacteriol. 1999; 181(13):3949–3955.
[91] Steenhoudt O., Vanderleyden J., Kefalogianni I., Aggelis G. Modelling growth and biochemical activities of Azospirillum spp. Appl. Microbiol. Biotechnol 2002 58, N 3:352–357.
[92] Fedonenko Yu. P., Konnova O. N., Zatonsky G. V., Shashkov A. S., Konnova S. A., Zdorovenko E. L., Ignatov V. V., Knirel Yu. A. Structure of the O-polysaccharide of the lipopolysaccharide of Azospirillum irakense KBC1 Carbohydr. Res 2004 339, N 10:1813–1816.
[93] Fedonenko Yu. P., Egorenkova I. V., Konnova S. A., Ignatov V. V. Involvement of the lipopolysaccharides of azospirilla in the interaction with wheat seedling roots Microbiology 2001 70, N 3:384–390.
[94] Fedonenko Yu. P., Zdorovenko E. L., Konnova S. A., Ignatov V. V., Shlyakhtin G. V. Comparison of the lipopolysaccharides and O-specific polysaccharides of Azospirillum brasilense Sp245 and its omegon-Km mutants KM018 and KM252. Mikrobiologiia. 2004; 73(2):180–187.
[95] Fedonenko Yu. P., Borisov I. V., Konnova O. N., Zdorovenko E. L., Katsy E. I., Konnova S. A., Ignatov V. V. Determination of the structure of the repeated unit of the Azospirillum brasilense SR75 O-specific polysaccharide and homology of the lps-loci in the plasmids of Azospirillum brasilense strains SR75 and Sp245. Mikrobiologiia. 2005; 74(5):626–632.
[96] Antonyuk LP, Fomina OR, Ignatov VV. Effect of wheat lectin on the metabolism of Azospirillum brasilense: induction of protein synthesis. Mikrobiologiia. 1997; 66(2):172-8.
[97] Antonyuk L. P., Fomina O. R., Kalinina A. V., Semynov S. V., Nesmeyanova M. A., Ignatov V. V. Wheat lectin possibly serves as a signal molecule in Azospirillum-wheat association Azospirillum VI and related microorganisms: Genetics, physiology, ecology. Eds I. Fendrik et al Berlin: Springer (NATO ASI Ser.; V. G37), 1995:319–324.
[98] Wasson A. P., Pellerone F. I., Mathesius U. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia Plant Cell 2006 18:1617–1629.
[99] Spaepen S., Vanderleyden J., Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling FEMS Microbiol. Rev 2007 31, N 4:425–448.
[100] Costacurta A., Vanderleyden J. Synthesis of phytohormones by plant-associated bacteria Crit. Rev. Microbiol 1995 21, N 1:1–18.
[101] Van de Broek A., Gysegom P., Ona O., Hendrickx N., Prinsen E., Van Impe J., Vanderleyden J. Transcriptional analysis of the Azospirillum brasilense indole-3-pyruvate decarboxylase gene and identification of a cis-acting sequence involved in auxin responsive expression Mol. Plant-Microbe Interact 2005 18:311–323.
[102] Malhotra M., Srivastava S. An ipgC gene knock-out of Azospirillum brasilense strain SM and its implications on indole-3-acetic acid biosynthesis and plant growth promotion Antonie van Leeuwenhoek 2008 93, N 4:425–433.
[103] Somers E., Ptacek D., Gysegom P., Srinivasan M., Vanderleyden J. Azospirillum brasilense produces the auxin-like phenylacetic acid by using the key enzyme for indole3-acetic acid biosynthesis Appl. Environ. Microbiol 2005 71:1803–1810.
[104] Spaepen S., Vanderleyden J., Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling FEMS Microbiol. Rev 2007 31:425–448.
[105] Sergeeva E., HirkalaD. L. M., Nelson L. M. Production of indole-3-acetic acid, aromatic amino acid aminotransferase activities and plant growth promotion by Pantoea agglomerans rhizosphere isolates Plant and Soil 2007 297, N 1–2:1–13.
[106] Cassan F., Bottini R., Schneider G., Piccoli P. Azospirillum brasilense and Azospirillum lipoferum hydrolyze conjugates of GA20 and metabolize the resultant aglycones to GA1 in seedlings of rice dwarf mutants Plant Physiol 2001 125:2053–2058.
[107] Oger P. M., Mansouri H., Nesme X., Dessaux Y. Engineering root exudation of Lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizoshere Microbiol. Ecol 2004 47, N 1:96–103.