Biopolym. Cell. 2009; 25(1):62-72.
Молекулярная биофизика
Исследование спектра комбинационного рассеяния Fe(II)-порфина методом функционала плотности
1Минаева В. А., 1Минаев Б. Ф., 2Говорун Д. Н.
  1. Черкасский национальный университет имени Богдана Хмельницкого
    б-р Шевченко, 81, Черкассы, Украина, 18031
  2. Институт молекулярной биологии и генетики НАН Украины
    ул. Академика Заболотного, 150, Киев, Украина, 03680

Abstract

Квантово-химическим методом теории функционала плотности проведено моделирование спектра комбинационного рассеяния света (КРС) Fe(II)-порфина в квинтетном (основном) состоянии молекулы. Для оптимизации геометрии и расчета спектра КРС использован неограниченный по спину функционал UB3LYP в базисе 6-311G. Все активные в спектре КРС моды детально проанализированы. Показано, что введение в молекулу порфина иона Fe(II) приводит к значительному изменению частот и интенсивностей колебательных мод в тех случаях, когда при колебании происходит сильное смещение атомов азота. Обсуждается отношение деполяризации КРС для плоскополяризованного падающего света.
Keywords: Fe(II)-порфин, квинтетное спиновое состояние, теория функционала плотности, спектр КРС

References

[1] Minaev B. F., Minaeva V. A., Vasenko O. M. Calculation of the Fe(II) porphin spin states by the density functional theory. Ukr. Bioorg. Acta. 2007; 5(1):24–31.
[2] Kozlowski P., Jarzecki A., Pulay P., Li X.-Y., Zgierski M. Vibrational assignment and definite harmonic force field for porphine. 2. Comparison with Nonresonance Raman Data J. Phys. Chem 1996; 100(33):13985–13992
[3] Minaev B., Agren H. Theoretical DFT study of phosphorescence from porphyrins. Chem. Phys. 2005; 315(3):215–239.
[4] Minaev B. F., Minaev A. B., Hovorun D. M. Investigation of infrared spectrum of Fe(II) porphin in different spin states by quantum chemical density functional theory Biopolym. Cell 2007 23, N 6:527–536.
[5] Kozlowski P. M., Spiro T. G., Berces A., Zgierski M. Z. Low-lying spin states of iron(II) Porphine J. Phys. Chem. B 1998 102, N 14:2603–2608.
[6] Becke A. D. Density-functional thermochemistry. The role of exact exchange J. Chem. Phys 1993 98, N 7:5648–5655.
[7] Paulat F., Praneeth V. K. K., Nather Ch., Lehnert N. Quantum chemistry-based analyses of the vibrational spectra of five-coordinate metalloporphyrins [M(TPP)Cl] Inorg. Chem 2006 45, N 7:2835–2856.
[8] Jarzecki A., Kozlowski P., Pulay P., Ye B. H., Li X.-Y. Scaled quantum mechanical and experimental vibrational spectra of magnesium and zinc porphyrins Spectrochim. Acta 1997 A53, N 8:1195–1209.
[9] Verdal N., Kozlowski P., Hudson B. Inelastic neutron scattering spectra of free base and zinc porphines: A comparison with DFT-based vibrational analysis J. Phys. Chem. A 2005 109, N 25:5724–5733.
[10] Kozlowski P., Jarzecki A., Pulay P. Vibrational assignment and definite harmonic force field for porphine. 1. Scaled quantum mechanical results and comparison with empirical force field J. Phys. Chem 1996 100, N 17 7007–7013.
[11] Ozaki Y., Iriyama K., Ogoshi H., Ochiai T., Kitagawa T. Resonance Raman characterization of iron-chlorin complexes in various spin, oxidation, and ligation states. 1. Comparative study with corresponding iron-porphyrin complexes J. Phys. Chem 1986 90, N 31:6105–6112.
[12] Solovjev KN, Gladkov LL, Starukhin AS, Shkirman SF. Spectroscopy of porphyrins: vibrational states. Minsk: Nauka i Tekhnika, 1985; 415 p.
[13] Kitagawa T., Abe M., Ogoshi H. Resonance Raman spectra of octaethylporphyrinato-Ni(II) and meso-deuterated and 15N substituted derivatives. I. Observation and assignments of nonfundamental Raman lines J. Chem. Phys 1978 69, N 10 4516–4525.
[14] Tunnel I., Rinkevicius Z., Vahtras O., Salek P., Helgaker T., Agren H. Density functional theory of nonlinear triplet response properties with applications to phosphorescence J. Chem. Phys 2003 119, N 21:11024–11034.
[15] Frisch M. J., Trucks G. W., Schlegel H. B. et al. Gaussian 03, Revision C.02 Wallingford CT, 2004.
[16] Huszank R., Horvath O. A heme-like, water-soluble iron(II) porphyrin: thermal and photoinduced properties, evidence for sitting-atop structure Chem. Commun 2005 N 2 P. 224–226.
[17] Drago R. Physical methods in chemistry M.: Mir, 1981 Vol. 1 422 p.
[18] Gladkov L., Gradyushko A., Shulga A., Solovyov K., Starukhin A. Experimental and theoretical investigation of infrared spectra of porphin, its deuterated derivatives and their metal complexes J. Mol. Struct. THEOCHEM 1978 45, N 3 P. 463–493.
[19] Radziszewski J. G., Waluk J., Nepras M., Michl J. Fourier transform fluorescence and phosphorescence of porphine in rare gas matrixes J. Chem. Phys 1991 95, N 5:1963–1969.
[20] Li X.-Y., Zgierski M. Porphine force field: in-plane normal modes of free-base porphine. Comparison with metalloporphines and structural implications J. Phys. Chem 1991 95, N 11:4268–4287.