Biopolym. Cell. 2012; 28(1):14-23.
Обзоры
Молекулярные составляющие метаболизма фосфо и гликолипидов в мембранах растительных клеток в условиях дефицита фосфора
1Светлова Н. Б.
  1. Учебно-научный центр «Институт биологии»
    Киевского национального университета имени Тараса Шевченко
    ул. Владимирская, 64/13, Киев, Украина, 01601

Abstract

Обзор посвящен одной из составляющих молекулярной регуляции метаболизма фосфора в растительном организме – липидным компонентам мембранных структур. Изменение направленности метаболизма фосфои гликолипидов является показателем доступности фосфора растениям. Компенсаторные механизмы замещения фосфолипидов нефосфоросодержащими гликолипидами в мембранах позволяют растениям адаптироваться к условиям ограничения поступления фосфатов (Pi), а фосфолипиды служат резервным пулом клеточного фосфора при реутилизации ионов в донорно-акцепторной системе. Проанализированы механизмы транскрипционной регуляции генов, причастных к синтезу фосфои гликолипидов в условиях дефицита Pi.
Keywords: дефицит фосфора, моногалактозилдиацилглицерол, дигалактозилдиацилглицерол, сульфохиновозилдиацилглицерол, фосфатидилглицерол, гены MGD, DGD, SQD, PLDz, NCP

References

[1] Yuan H., Liu D. Signaling components involved in plant responses to phosphate starvation. J. Integr. Plant Biol 2008 50, N 7:849–859.
[2] Raghothama K. G. Phosphate transport and signaling. Curr. Opin. Plant. Biol 2000 3, N 3:182–187.
[3] Raghothama K. G. Phosphate acquisition. Annu. Rev. Plant. Physiol. Plant. Mol. Biol 1999 50:665–693.
[4] Franco-Zorrilla J. M., Gonzalez E., Bustos R., Linhares F., Leyva A., Paz-Ares J. The transcriptional control of plant responses to phosphate limitation. J. Exp. Bot 2004 55, N 396:285– 293.
[5] Poirier Y., Bucher M. Phosphate transport and homeostasis in Arabidopsis. The Arabidopsis book / Eds C. R. Somerville, E. M. Meyerowitz, M. D. Rockville New York: The Amer. Soc. of Plant Biologists Publ., 2002:1–35.
[6] Joyard J., Marechal E., Block M. A., Douce R. Plant galactolipids and sulfolipid: structure, distribution and biosynthesis. Membranes: Specialized functions in plants / Eds M. Smallwood, P. Knox, D. J. Bowles Oxford: BIOS Sci. Publ., 1996 P. 179–194.
[7] Browse J., Somerville C. Glycerolipid synthesis: biochemistry and regulation. Annu. Rev. Plant Physiol. Plant Mol. Biol 1991 42:467–506.
[8] Joyard J., Marechal E., Miege C., Block M. A., Dorne A. J., Douce R. Structure, distribution and biosynthesis of glycerolipids from higher plant chloroplasts. Lipids in photosynthesis: Structure, function and genetics / Eds P.-A. Siegenthaler, N. Murata Dordrecht: Kluwer Acad. Publ., 1998 P. 21–52.
[9] Poirier Y., Thoma S., Somerville C., Schiefelbein J. Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 1991 97, N 3:1087–1093.
[10] Frentzen M. Phosphatidylglycerol and sulfoquinovosyldiacylglycerol: anionic membrane lipids and phosphate regulation. Curr. Opin. Plant Biol 2004 7, N 3:270–276.
[11] Awai K., Marechal E., Block M. A., Brun D., Masuda T., Shimada H., Takamiya K., Ohta H., Joyard J. Two types of MGDG synthase genes, found widely in both 16:3 and 18:3 plants, differentially mediate galactolipid syntheses in photosynthetic and nonphotosynthetic tissues in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 2001 98, N 19:10960–10965.
[12] Dormann P., Balbo I., Benning C. Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. Science 1999 284, N 5423:2181–2184.
[13] Kelly A. A., Dormann P. Green light for galactolipid trafficking. Curr. Opin. Plant Biol 2004 7, N 3:262–269.
[14] Mige C., Marechal E., Shimojima M., Awai K., Block M. A., Ohta H., Takamiya K., Douce R., Joyard J. Biochemical and topological properties of type A MGDG synthase, a spinach chloroplast envelope enzyme catalyzing the synthesis of both prokaryotic and eukaryotic MGDG. Eur. J. Biochem 1999 265, N 3:990–1001.
[15] Kobayashi K., Nakamura Y., Ohta H. Type A and type B monogalactosyldiacylglycerol synthases are spatially and functionally separated in the plastids of higher plants. Plant Physiol. Biochem 2009 47, N 6:518–525.
[16] Kobayashi K., Masuda T., Takamiya K., Ohta H. Membrane lipid alteration during phosphate starvation is regulated by phosphate signaling and auxin/cytokinin cross-talk. Plant J 2006 47, N 2:238–248.
[17] Kelly A. A., Froehlich J. E., Dormann P. Disruption of the two digalactosyldiacylglycerolsynthase genes DGD1 and DGD2 in Arabidopsis reveals the existence of an additional enzyme of galactolipid synthesis. Plant Cell 2003 15, N 11:2694– 2706.
[18] Hartel H., Dormann P., Benning C. DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proc. Natl Acad. Sci. USA 2000 97, N 19 P. 10649–10654.
[19] Kelly A. A., Dormann P. DGD2, an Arabidopsis gene encoding a UDP-galactose-dependent digalactosyldiacylglycerol synthase is expressed during growth under phosphate limiting conditions. J. Biol. Chem 2002 277, N 2:1166–1173.
[20] Muller F., Frentzen M. Phosphatidylglycerophosphate synthases from Arabidopsis thaliana. FEBS Lett 2001 509, N 2 P. 298–302.
[21] Babiychuk E., Muller F., Eubel H., Braun H. P., Frentzen M., Kushnir S. Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J 2003 33, N 5:899– 909.
[22] Xu C., Hartel H., Wada H., Hagio M., Yu B., Eakin C., Benning C. The pgp1 mutant locus of Arabidopsis encodes a phosphatidylglycerolphosphate synthase with impaired activity. Plant Physiol 2002 129, N 2:594–604.
[23] Hagio M., Sakurai I., Sato S., Kato T., Tabata S., Wada H. Phosphatidylglycerol is essential for the development of thylakoid membranes in Arabidopsis thaliana. Plant Cell Physiol 2002 43, N 12:1456–1464.
[24] Dormann P., Benning C. Galactolipids rule in seed plants. Trends Plant Sci 2002 7, N 3:112–118.
[25] Essigmann B., Guler S., Narang R. A., Linke D., Benning C. Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Aarabidopsis thaliana. Proc. Natl Acad. Sci. USA 1998 95, N 4:1950–1955.
[26] Sanda S., Leustek T., Theisen M. J., Garavito R. M., Benning C. Recombinant Arabidopsis SQD1 converts UDP-glucose and sulfite to the sulfolipid head group precursor UDP-sulfoquinovose in vitro. J. Biol. Chem 2001 276, N 6:3941–3946.
[27] Taran N. Yu., Okanenko A. A., Kosyk O. I. Plant sulfolipid. II. Mutant study and phosphate deficiency. Biopolym. Cell 2009 25, N 1:3–11.
[28] Yu B., Xu C., Benning C. Arabidopsis disrupted in SQD2 encoding sulfolipid synthase is impaired in phosphate-limited growth. Proc. Natl Acad. Sci. USA 2002 99, N 8:5732–5737.
[29] Benning C. Biosynthesis and function of the sulfolipid sulfoquinovosyl diacylglycerol. Annu. Rev. Plant Physiol. Plant Mol. Biol 1998 49:53–75.
[30] Douce R., Joyard J. Biosynthesis of thylakoid membrane lipids. Advances in photosynthesis, oxygenic photosynthesis: The light reactions / Eds D. R. Ort, C. F. Yocum Dordrecht: Kluwer Acad. Publ., 1996 Vol. 4:69–101.
[31] Nakamura Y., Awai K., Masuda T., Yoshioka Y., Takamiya K., Ohta H. A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis. J. Biol. Chem 2005 280, N 9:7469–7476.
[32] Jouhet J., Marechal E., Bligny R., Joyard J., Block M. A. Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett 2003 544, N 1–3 P. 63–68.
[33] Sato N., Hagio M., Wada H., Tsuzuki M. Environmental effects on acidic lipids of thylakoid membranes. Biochem. Soc. Trans 2000 28, N 6:912–914.
[34] Li M., Qin C., Welti R., Wang X. Double knockouts of phospholipases Df1 and Df2 in Arabidopsis affect root elongation during phosphate-limited growth but do not affect root hair patterning. Plant Physiol 2006 140, N 2:761–770.
[35] Li M., Welti R., Wang X. Quantitative profiling of Arabidopsis polar glycerolipids in response to phosphorus starvation roles of phospholipases Df1 and Df2 in phosphatidylcholine hydrolysis and digalactosyldiacylglycerol accumulation in phosphorusstarved plants. Plant Physiol 2006 142, N 2:750–761.