Biopolym. Cell. 2021; 37(2):85-97.
Reviews
Bacteriocins Lactobacillus — an alternative to antimicrobial drugs
1, 2Voloshyna I. M., 2Soloshenko K. I., 2Krasinko V. O., 2Lych I. V., 1, 3Shkotova L. V.
  1. Kyiv National University of Technologies and Design
    2, Nemirovich-Danchenko Str., Kyiv, Ukraine, 01011
  2. National University of Food Technologies
    68, Volodymyrska Str., Kyiv, Ukraine, 01601
  3. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143

Abstract

The review presents the characteristics of bacteria of the Lactobacillus family and their ability to synthesize various bacteriocins. The classification of bacteriocins of lactobacilli is given, which includes three classes: class I – lantibiotics (peptides with a molecular weight of less than 5 kDa, which contain lanthionine), class II – unmodified bacteriocins, also called non-lantibiotics (heat-resistant peptides , which do not contain lanthionine and have a molecular weight less than 10 kDa), and class III – a poorly studied group of thermolabile proteins with a molecular weight of more than 30 kDa. Lactobacilli are shown to synthesize a wide spectrum of bacteriocins, which demonstrate a variety of actions and are able to inhibit the growth of numerous species of opportunistic gram-positive microflora. The article also provides the examples of bacteriocins produced by Lactobacillus isolated from food products (fermented meat, fish, kombucha, goat milk, koumiss, etc.) and various human biotopes (microbiota of breast milk, intestinal tract and vaginal secretions). Additionally, the review shows the prospects of wide application of bacteriocins synthesized by Lactobacillus in the food and pharmaceutical industries.
Keywords: bacteriocins, Lactobacillus, lactococci, lactic acid bacteria, probiotics

References

[1] Ray Mohapatra A, Jeevaratnam K. Inhibiting bacterial colonization on catheters: Antibacterial and antibiofilm activities of bacteriocins from Lactobacillus plantarum SJ33. J Glob Antimicrob Resist. 2019;19:85-92.
[2] Avaiyarasi ND, Ravindran AD, Venkatesh P, Arul V. In vitro selection, characterization and cytotoxic effect of bacteriocin of Lactobacillus sakei GM3 isolated from goat milk. Food Control. 2016; 69:124–33.
[3] Balciunas EM, Martinez FAC, Todorov SD, de Melo Franco BDG, Converti A, de Souza Oliveira RP. Novel biotechnological applications of bacteriocins: A review. Food Control. 2013; 32(1):134–42.
[4] de Souza Barbosa M, Todorov SD, Ivanova I, Chobert JM, Haertlé T, de Melo Franco BDG. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol. 2015;46:254-262.
[5] Belguesmia Y., Naghmouchi K., Chihib NE., Drider D. Class IIa Bacteriocins: Current Knowledge and Perspectives. In: Drider D., Rebuffat S. (eds) Prokaryotic Antimicrobial Peptides. 2011. Springer, New York, NY. 171-95
[6] Brandelli A, Sala L, Kalil SJ. Microbial enzymes for bioconversion of poultry waste into added-value products. Food Res Int. 2015; 73:3–12.
[7] De Angelis M, Gobbetti M. Lactobacillus spp.: General Characteristics. Reference Module in Food Sci. 2016.
[8] Dhama K, Latheef SK, Munjal AK, Khandia R, Samad HA, Iqbal HMN, Joshi SK. Probiotics in Curing Allergic and Inflammatory Conditions - Research Progress and Futuristic Vision. Recent Pat Inflamm Allergy Drug Discov. 2017;10(2):105-118.
[9] Dicks LMT, Dreyer L, Smith C, van Staden AD. A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut-Blood Barrier? Front Microbiol. 2018;9:2297.
[10] Diep DB, Skaugen M, Salehian Z, Holo H, Nes IF. Common mechanisms of target cell recognition and immunity for class II bacteriocins. Proc Natl Acad Sci U S A. 2007;104(7):2384-9.
[11] Dobson A, Cotter PD, Ross RP, Hill C. Bacteriocin production: a probiotic trait? Appl Environ Microbiol. 2012;78(1):1-6.
[12] Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev. 2006;70(2):564-82.
[13] Egorov NS, Baranova IP. Bakteriotsiny. Obrazovanie, svoÄ­stva, primenenie [Bacteriocins. Production, properties, application]. Antibiot Khimioter. 1999;44(6):33-40.
[14] Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, De Sutter L, Lima-Mendez G, D'hoe K, Jonckheere K, Homola D, Garcia R, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes J. Population-level analysis of gut microbiome variation. Science. 2016;352(6285):560-4.
[15] Gálvez A, Abriouel H, López RL, Ben Omar N. Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol. 2007;120(1-2):51-70.
[16] Guinane CM, Piper C, Draper LA, O'Connor PM, Hill C, Ross RP, Cotter PD. Impact of Environmental Factors on Bacteriocin Promoter Activity in Gut-Derived Lactobacillus salivarius. Appl Environ Microbiol. 2015;81(22):7851-9.
[17] Hols P, Ledesma-García L, Gabant P, Mignolet J. Mobilization of Microbiota Commensals and Their Bacteriocins for Therapeutics. Trends Microbiol. 2019;27(8):690-702.
[18] Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207-14.
[19] Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, Björkstén B, Engstrand L, Andersson AF. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559-66.
[20] Jia FF, Zhang LJ, Pang XH, Gu XX, Abdelazez A, Liang Y, Sun SR, Meng XC. Complete genome sequence of bacteriocin-producing Lactobacillus plantarum KLDS1.0391, a probiotic strain with gastrointestinal tract resistance and adhesion to the intestinal epithelial cells. Genomics. 2017;109(5-6):432-437.
[21] Kalyuzhin OV. Probioticheskie shtammy` laktobacill kak immunomodulyatory`: v fokuse – Lactobacillus rham-nosus GG. Medicinskij sovet. 2017; 9:108–15.
[22] Kato S, Hamouda N, Kano Y, Oikawa Y, Tanaka Y, Matsumoto K, Amagase K, Shimakawa M. Probiotic Bifidobacterium bifidum G9-1 attenuates 5-fluorouracil-induced intestinal mucositis in mice via suppression of dysbiosis-related secondary inflammatory responses. Clin Exp Pharmacol Physiol. 2017;44(10):1017-1025.
[23] Kawai Y, Ishii Y, Uemura K, Kitazawa H, Saito T, Itoh T. Lactobacillus reuteri LA6 and Lactobacillus gasseri LA39 isolated from faeces of the same human infant produce identical cyclic bacteriocin. Food Microbiol. 2001; 18(4):407–15.
[24] Kim MS, Byun JS, Yoon YS, Yum DY, Chung MJ, Lee JC. A probiotic combination attenuates experimental colitis through inhibition of innate cytokine production. Benef Microbes. 2017;8(2):231-241.
[25] Kumariya R, Garsa AK, Rajput YS, Sood SK, Akhtar N, Patel S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb Pathog. 2019;128:171-177.
[26] Lahtinen SJ, Forssten S, Aakko J, Granlund L, Rautonen N, Salminen S, Viitanen M, Ouwehand AC. Probiotic cheese containing Lactobacillus rhamnosus HN001 and Lactobacillus acidophilus NCFM® modifies subpopulations of fecal lactobacilli and Clostridium difficile in the elderly. Age (Dordr). 2012;34(1):133-43.
[27] Liu W, Pang H, Zhang H, Cai Y. Biodiversity of lactic acid bacteria. Springer. 2014; 103–203.
[28] Lv X, Ma H, Sun M, Lin Y, Bai F, Li J, Zhang B. A novel bacteriocin DY4-2 produced by Lactobacillus plantarum from cutlass fish and its application as bio-preservative for the control of Pseudomonas fluorescens in fresh turbot (Scophthalmus maximus) fillets. Food Control. 2018; 89:22–31.
[29] Mohammadi F, Eshaghi M, Razavi S, Sarokhalil DD, Talebi M, Pourshafie MR. Characterization of bacteriocin production in Lactobacillus spp. isolated from mother's milk. Microb Pathog. 2018;118:242-246.
[30] Pei J, Jin W, Abd El-Aty AM, Baranenko DA, Gou X, Zhang H, Yue T. Isolation, purification, and structural iden-tification of a new bacteriocin made by Lactobacillus plantarum found in conventional kombucha. Food Control. 2020; 110:106923.
[31] Vera Pingitore E, Hébert EM, Nader-Macías ME, Sesma F. Characterization of salivaricin CRL 1328, a two-peptide bacteriocin produced by Lactobacillus salivarius CRL 1328 isolated from the human vagina. Res Microbiol. 2009;160(6):401-8.
[32] Rasheed HA, Tuoheti T, Zhang Y, Fidelis A, Tek-liye M, Dong M. Purification and partial characte-ri-zation of a novel bacteriocin produced by bacteriocinogenic Lactobacillus fermentum BZ532 isolated from Chinese fer-mented cereal beverage (Bozai). LWT – Food Sci Technol. 2020; 124:109–13.
[33] Rubel M, Voloshyna I. The use of probiotic microorganisms in cosmetic medical products. Scientific Works Of National University Of Food Technologies. 2014; 2(20):23–9.
[34] Sabia C, Anacarso I, Bergonzini A, Gargiulo R, Sarti M, Cond C, Bondi M. Detection and partial characterization of a bacteriocin-like substance produced by Lactobacillus fermentum CS57 isolated from human vaginal secretions. Anaerobe. 2014; 26:41–5.
[35] Sabo SS, Converti A, Ichiwaki S, Oliveira RPS. Bacteriocin production by Lactobacillus plantarum ST16Pa in supplemented whey powder formulations. J Dairy Sci. 2019;102(1):87-99.
[36] Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol. 2016;14(8):e1002533.
[37] Stinson LF, Payne MS, Keelan JA. Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota. Crit Rev Microbiol. 2017;43(3):352-369.
[38] Sun Z, Wang X, Zhang X, Wu H, Zou Y, Li P, Sun C, Xu W, Liu F, Wang D. Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. J Ind Microbiol Biotechnol. 2018;45(3):213-227.
[39] Thompson JK, Collins MA, Mercer WD. Characterization of a proteinaceous antimicrobial produced by Lactobacillus helveticus CNRZ450. J Appl Bacteriol. 1996;80(3):338-48.
[40] van Baarlen P, Wells JM, Kleerebezem M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol. 2013;34(5):208-15.
[41] Vijay Simha B, Sood SK, Kumariya R, Garsa AK. Simple and rapid purification of pediocin PA-1 from Pediococcus pentosaceous NCDC 273 suitable for industrial application. Microbiol Res. 2012;167(9):544-9.
[42] Voloshyna IM, Shkotova LV, Skorokhod SO, Appolonova IY, Zholobak NM. Lactobacillus bacteria: biological and therapeutic properties. Mikrobiol Z. 2019; 81(6):131–46.
[43] Wayah SB, Philip K. Purification, characterization, mode of action, and enhanced production of Salivaricin mmaye1, a novel bacteriocin from Lactobacillus salivarius SPW1 of human gut origin. Electron J Biotechnol. 2018; 35:39–47.
[44] Wu CT, Chen PJ, Lee YT, Ko JL, Lue KH. Effects of immunomodulatory supplementation with Lactobacillus rhamnosus on airway inflammation in a mouse asthma model. J Microbiol Immunol Infect. 2016;49(5):625-635.
[45] Yi L, Dang Y, Wu J, Zhang L, Liu X, Liu B, Zhou Y, Lu X. Purification and characterization of a novel bacteriocin produced by Lactobacillus crustorum MN047 isolated from koumiss from Xinjiang, China. J Dairy Sci. 2016;99(9):7002-7015.