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A role of specific collective motions and clustering behavior In protein folding was investigated using simple 
2D lattice models. Two model peptides, which have the sequences of hierarchical and non-hierarchical 
design, were studied comparatively. Simulations were performed using three methods: Metropolis Monte 
Carlo with the local move set, Metropolis Monte Carlo with unspeclflc rigid rotations, and the Clustering 
Monte Carlo (CMC) algorithm that has been recently described by the authors. The latter was developed 
with particular aim to provide a realistic description of cluster dynamics. We present convincing evidence 
that the folding pathways and kinetics of hierarchically folding sequence are not adequately described in 
conventional MC simulations. In this case the account for cluster dynamics provided by CMC algorithm 
reveals important features of folding of hierarchically organized sequences. Our data suggest that the 
methods, which enable specific cluster motions, should be used for realistic description of hierarchical 
folding. 

Introduction. T h e ideas that proteins fold hierar­
chically, by sequential formation and association of 
clusters of residues with increasing their size and 
complexity, are in the minds of many researchers 
[1—11] . Definitely, the process of folding is not a 
one-step event, and the acquisition of native structure 
occurs via formation and ordering its less organized 
elements. The sequential acquisition of structure can 
explain the observation of equilibrium and kinetic 
intermediates [3—6, 10, 11] including those with 
non-native structural elements [12—15] . This mecha­
nism explains the observed very fast kinetics of the 
folding process [16] and provides a clear solution of 
Levinthal paradox [17] . Instead of global unfolding-
folding equilibrium, a spectrum of available protein 
conformations is observed in hydrogen exchange 
experiments [18—20] . 

The hierarchical na ture of fluctuations in the 
native state at equilibrium has been established based 
on these data , and the possibility that they may 
represent folding intermediates of variable complexity 
has been suggested. During the process of folding the 
appearance of stable structures of larger and larger 

© S. O. YESYLEVSKYY, A. P. D E M C H E N K O , 2 0 0 4 

dimension should change the whole broad spectrum of 
collective motions [20 ]. When some group of residues 
forms a cluster stabilized by non-covalent inter­
actions, then there appear new degrees of freedom, 
which are the rotations and translat ions of the cluster, 
with dramatic reduction of conformational space avai­
lable for individual residues forming the cluster [21 ]. 
Since such mechanism seems reasonable and sup­
ported by numerous experimental observations, have 
been many at tempts for its modeling and simulation 
with different objectives and on different level of 
complexity [7—9, 22, 2 3 ] . 

T h e extreme complexity of the folding process 
justifies the development of highly simplified models 
[24—27]. Lacking the details, these models should be 
able to observe the role of basic physical principles 
otherwise h idden by atomic description and capture 
essential elementary events of the folding. T h e most 
popular examples of simplified models a re the lattice 
models, in which the residues a re represented by 
beads connected by rigid «sticks». In these models the 
motion of a chain is restricted to a lattice, and the 
only allowed interactions are the interactions with the 
nearest neighbors. T h e folding of lattice proteins is 
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usually simulated by different Monte Carlo <MC) 
algorithms [26 ]. These methods provide an easy way 
for global energy minimization of the system, which 
is thought to be reached in the native state of the 
folding chain. Monte Carlo simulations play an impor­
tant role in investigation of essential steps of protein 
folding and provide the observations of folding nuclei, 
reaction bottlenecks, misfolded and intermediate sta­
tes and so on [24—27]. 

Despite this apparent success the results of these 
simulations can not be easily accepted as representing 
the real mechanisms of protein folding. The lattice 
models allow only a rough course-grained description 
of the protein conformational space, which keeps the 
model very simple and makes the folding problem 
computat ionally t ractable . Despite the simplified 
treatment of the conformational space the models may 
still correctly describe the basic folding dynamics of a 
real protein. This is possible if the motions of the 
chain on the lattice correspond to the actually occur­
ring motions of the real chain. 

However, existing methods of Monte Carlo simu­
lations of lattice proteins seem to oversimplify the 
dynamics of the chain and thus have several serious 
weak points. One of them is a limitation on each MC 
step imposed by the fixed set of allowed elementary 
moves. T h e choice of the move set is a widely 
discussed question, which is not completely solved yet 
[28 ]. The «classical» MC studies were performed 
using the Local Move Set (LMS) [24 ]. It is a minimal 
move set for sampling the major part of confor­
mational space of the chain. It includes only three 
types of moves: pivot and corner single-bead moves 
and crankshaft moves of two beads . This move set is 
definitely far remote from physical reality, because it 
does not allow analyzing possible collective motions. 
The latter can be very important , especially at the 
final steps of folding. Another widely used move set 
is LMS with the unspecific rigid rotations added. We 
will call it MS2 following Chan and Dill [29] . MS2 
allows collective «diffusional» motions and therefore is 
considered to be much more realistic. 

Both abovementioned move sets and their nume­
rous modifications have one serious drawback. For a 
given bead the move set does not depend on the 
current state of the chain. It does not depend on the 
current chain topology and remains the same even if 
a particular bead forms the contacts with its neigh­
bors. In other words, the move sets LMS and MS2 are 
s tructure-independent , or unspecific. In real proteins, 
however, the conformational mobility of the amino 
acid residues is always controlled by the local and 
non-local interactions and the chain topology. It 
should definitely restrict the motion along certain 
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degrees of freedom and diminish dramatically the 
available conformational space of the chain. 

Collective motions a re present in MS2, but they 
are also s t ructure- independent . Any segment may be 
involved into rigid rotation regardless of its topology. 
Particularly, non-compact (even linear) chain seg­
ments may be rotated as rigid «sticks», which is 
obviously far from physical reali ty. More realistic 
description of the collective motions should consider 
the motions which are specific to current topological 
s tate of the chain and which depend on the formed 
contacts. 

Thus , a new step in the development of MC 
algorithms in their application to lattice models of 
protein folding is required. We need to provide a 
description of collective motions with regard to in­
crease in their complexity in the course of folding and 
of their dependence on the current chain topology and 
energetics. In order to achieve this goal we have 
inevitably to address the questions on the validity of 
the micro-reversibility postulate, which is in the 
background of all conventional MC simulations. Based 
on this postulate, the energies of two sequencial 
conformations a re compared and each elementary step 
(the change of chain configuration) is ei ther accepted 
or rejected according to Metropolis or some other 
similar criterion. Acceptance criterion is based on the 
assumption that the folding chain is considered to be 
in local equilibrium described by Bolzmann energy 
distribution. This means that the transit ions between 
sequential conformations a re micro-reversible. Mean­
time, in physical reality the collective motions, and 
the cluster motions in particular, are essentially 
irreversible, so that the destruction of the large 
compact structure and its re-assembly may often 
follow completely different trajectories in the confor­
mational space. It is possible however to subdivide a 
complex collective motion into small steps, so that 
each of them may be considered as a micro-reversible 
transit ion. Applying Metropolis criterion to each step, 
in principle one can describe any collective motion. 
However, this is not possible with the coarse-grained 
lattice models. On the square lattice, for example, a 
cluster can be rotated by only 90 degrees at once, and 
no intermediate cluster positions a re allowed. So, in 
order to simulate possible hierarchical cluster for­
mation there appears the necessity not only to modify 
basic MC methods but also to introduce new concepts. 

The aim of our work is to develop a concept that 
could overcome these difficulties and to elaborate a 
novel MC method, which explicitly simulates the 
formation, motion and destruction of clusters appea­
ring during the folding process. This concept can be 
called the Clustering Monte Carlo (CMC) algorithm. 
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Fig. 1. Cluster disruption in CMC algo­
rithm. Cluster is indicated by dashed box. 
In case (a) there are no steric constraints 
for rotation, and the large thermal fluc­
tuations rotate the part of the cluster 
(shown in bold) and disrupt it. In case (b) 
the rotation is restricted by the proxi­
mately located part of the chain shown 
schematically to the right of the cluster. In 
this case the fluctuation energy dissipates 
and the cluster remains intact. Rotation of 
the whole clusters is performed according 
to the same principle 

Preliminary studies [9 ] have demonstra ted that CMC 
algorithm allows finding correctly the unique energy 
minimum of the folded state for a short 12-member 
peptide. In this communication we report on the 
comparative study of two model sequences which 
represent hierarchical and non-hierarchical folding 
pathways using CMC and conventional LMS and MS2 
methods. We demonstra te the possibility for a much 
more realistic description of the folding pathway and 
kinetics compared to conventional MC simulations 
with the unspecific move set. In simulations of folding 
of hierarchical sequences the account for specific 
collective motions of clusters including their formation 
and dissociation can be realized. 

Materials and Methods . Clustering Monte-Carlo 
algorithm. The basic idea behind this algorithm is to 
consider the motion of not a single residue, but of a 
cluster of residues of variable size ranging from a 
single residue to a whole protein sequence. Then the 
folding can be described as the process of growth and 
association of clusters. T h e cluster is defined as a set 
of residues connected by non-covalent bonds , which 
form a sterically rigid structure. This means that no 
part of the cluster can be moved or rotated without 
breaking the bonds connecting its elements. An ele­
mentary conformational change in our model is a 
rotation of a cluster or its part (the lat ter means in 
fact the cluster breakage) . 

Linear motions of the clusters a re taken into 
account implicitly, they occur when the rotation of 
one cluster «pulls» the other one. In the course of 
folding with the increasing size of the cluster these 
elementary changes start to involve collective motions 
of larger number of residues. So, the «scale» of 
elementary act in our model is variable and it always 
corresponds to the current size of the formed cluster. 
This eliminates from the process of folding the 
«frozen» degrees of freedom inside the clusters and 
allows to provide a correct description of collective 
motions on different scales. It is necessary to em­
phasize that there is no predefined move set in CMC 
in its conventional meaning because the cluster ro­

tation may involve any number of residues and may 
cause different chain rear rangements . 

As it was stated in introduction, the coarse­
grained lattice does not allow the rotations of the 
large clusters to be micro-reversible. We have found a 
solution of this problem by considering irreversible 
cluster rotations triggered by local thermal fluctua­
tions. T h e process of cluster breakage or rotation is 
divided into two independent steps. On the first step 
the cluster is provided with addit ional energy Ef 

which is the energy of thermal fluctuation. The 
second step is a «decision making* process. If the 
fluctuation energy Ef is larger than the bond-breaking 
energy Ed (which is the energy of the bonds needed 
to be broken in order to perform a rotat ion) , the 
cluster has to break apart . Otherwise the cluster will 
rotate as a whole. If there are some external steric 
restrictions, the energy will dissipate with no result in 
change of chain configuration (Fig. 1). 

In the simplest case the fluctuations may be 
considered as collisions with the solvent molecules. 
Therefore the energies of fluctuations may be des­
cribed by Bolzmann distribution 

In reality the cluster rotation should be controlled 
by solvent viscosity. Introduction of some constant 
energy Ел, which is needed to rotate a single residue 
cluster (of a minimal size), simulates this effect. 
Larger clusters in order to be rotated will need the 
energy ET = n-Efl, where n is a size of the cluster. If 
Ef < Er, the cluster can not rotate at all. Thus , Ел can 
be considered as a measure of the energies in CMC 
that allow or not allow a particular motion. 

It is clear, that the clusters with large bond-
breaking energies will be stable, while the clusters 
with small or negative (destructive) energies will 
break apart almost immediately. In o ther words, the 
system will perform an evolution in the search for an 
energy minimum by selection of clusters with higher 
stability. 
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Fig. 2. The structures of the studied 12-member 
peptides, sequence 1 and sequence 2, in their 
native conformations. Positively charged re­
sidues are marked black, negatively charged 
are white, neutral residues are gray. Dashed 
boxes in the case of sequence 1 indicate the 
clusters of the first hierarchical level. Non-local 
bonds with non-zero energy are shown by the 
striped bars 

Thus , CMC algorithm has clear physical inter­
pretation and does not require the highly questionable 
assumptions of micro-reversibility and of the presence 
of local thermodynamic equilibrium in elementary 
changes of chain configuration. It suggests a solution 
for the problem of description of structure-specific 
collective motions and is applicable to the cases of 
hierarchical cluster formation. In principle this appro­
ach allows the analysis of folding process in the 
systems of any size and any number of hierarchical 
levels. 

Protein model. In order to illustrate the ap ­
plicability and the advantages of CMC algorithm we 
have selected two «minimal» sequences, the first one 
exhibiting hierarchical behavior and the other-not. 
We studied two pre-designed lattice peptides with 12 
residues each, they a re referred below as sequence 1 
and sequence 2. The native states of these sequences 
are unique compact states with the minimal energy. 
Sequence 1 forms a hierarchically organized compact 
structure (Fig. 2, a), which folds into а З X 4 bar on 
the lattice. Residues 1—4 and 9—12 form two small 
clusters of the first hierarchical level (dashed boxes) 
which can assemble into the cluster of the second 
level. The latter contains all the residues. Single 
non-covalent bonds 1—4 and 9—12 stabilize the 
structure of the first-level clusters respectively. Two 
bonds 1—10 and 2—11 combine clusters. Residues 
5—8 form a connecting loop. In contrast , sequence 2 
has no hierarchical featurres (Fig. 2, b). It folds into 
а <ф sheet» with 3 s t rands stabilized by the bonds 
1—8, 2—7, 6—11 and 5—12. 

Compared to the common two-letter model (HP 
model) we have made a step towards a more realistic 
description of interaction between the residues. The 
H P model considers only attractive and neutral inter­
actions. In contrast, our three-let ter model operates 
with three types of interactions: attractive, repulsive 
and neutral . They are represented by negatively 
charged (type 1), positively charged (type 2) and 
neutral (type 3) residues. We have introduced attrac­
tion and repulsion energies for the charged residues 

located in adjacent vertices of the lattice. Neutral 
residues do not interact with the res idues of any type. 
The rotation energy of a single res idue cluster Ел is 
taken as a unit of energy. Each bond between charged 
residues is assumed to have the energy 50 in the case 
of charges of the same sign and - 5 0 in case of charges 
of the opposite sign. All o ther bonds are of zero 
energy. Both folded structures (sequences 1 and 2) 
at tain unique native states (Fig. 2) with the energy 
- 2 0 0 Ел units each. 

Simulation methods. T h r e e series of simulations 
have been performed comparatively using CMC algo­
rithm and Metropolis Monte-Car lo algorithms with 
LMS and MS2 move sets. The chains were equilibra­
ted at the high temperature T = 1000 for 1000 itera­
tions to generate a random unfolded conformation 
(the temperature is measured in dimensionless units 
квТіЬі/Ел). Then the tempera ture was abruptly lo­
wered to the desired level and the simulation pro­
ceeded up to the first folding to the native structure. 
The number of averaged independent runs for each 
temperature is 1000. 

T h e folding process was monitored by three 
progress parameters : the number of native contacts 
N„, the total number of contacts Nt and the energy of 
the structure E. We constructed a set of all possible 
chain conformations by their exhaust ive enumeration. 
T h e energy landscapes of the s tudied sequences were 
constructed by calculating the average energies of 
conformations from this set, which at tain particular 
values of Nn and Nt. 

Integrated residence t ime maps were constructed 
by monitoring the number of i terat ions spent by the 
sequence in the state with given progress parameters 
averaged over 1000 independent runs and normalized 
to unity. 

We calculated the values of the progress para­
meters for the final 100 i terat ions (1000 for LMS 
simulations of the sequence 1) averaged over 1000 
runs for various temperatures and used them for 
kinetics studies. 

Results and Discussion. Energy landscapes of the 
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Sequence 1 Sequence 2 

20.00 
-7.500 
-35.00 
-62.50 
-90.00 
-117.5 
-145.0 
-172.5 

Fig. 3. Contour plot of the energy 
landscape in coordinates Nn vs. Nt for 
sequence 1 and sequence 2 obtained 
by complete enumeration of confor­
mations. The folded state corresponds 
to the point (6:6) 

studied sequences. T h e 2D energy landscapes for our 
sequences in coordinates Nn vs. Nt were constructed 
by exhaustive enumerat ion of all chain conformations 
(Fig. 3) . For both sequences the native state cor­
responds to the upper right corner of Nn - Nt diagram 
with coordinates (6:6). Both sequences have pro­
nounced non-native energy minima at the points (5; 
5) with the energy - 1 5 0 . T h e energy landscape for 
sequence 2 is more rugged. It has two additional 
minima at points (6:4) and (6:2) corresponding to 
fully compact but misfolded conformations with the 
average energies - 1 5 0 and - 1 0 8 respectively. 

Integrated residence time maps provide important 
information about the folding pathway, especially 
about the intermediates and misfolded conformations 
emerged during the folding process. 

Integrated residence t ime maps for sequence 1 
are shown in Fig. 4, a. T h e maps obtained by CMC 
simulations show existence of several types of folding 
intermediates. For small temperatures (T = 10) the 
folding pathway is dominated by intermediates with 5 
contacts, 3 of which are native. They may be clas­
sified as semi-compact intermediates . T h e most prob­
able chain conformation in this region is composed of 
two folded clusters of the first level combined by 
non-native bonds . A significant part of the folding 
time is spent in those intermediates or in nearby 
regions of the map. 

For higher temperatures (T = 15—20) there ap ­
pears the second broad region of non-compact inter­
mediates located at the region (1:1—3:2). It cor­
responds to one or two correctly formed clusters of 
the first level connected by unfolded loop. With the 
increase of temperature the amount of t ime spent in 
these less compact configurations progressively in­
creases. When the tempera ture reaches 80—100 (data 
not shown), the s t rength of the single bond (50) 

becomes too small to stabilize the clusters of the first 
level. This temperature corresponds to denaturat ion 
conditions, so the totally unfolded state dominates the 
folding pathway. 

Comparison with the energy landscape in Fig. 3 
shows that non-native energy minimum at point (5:5) 
is occupied rarely. This means that the folding 
pathway does not always follow the gradient of 
energy, but ra ther goes through the kinetically acces­
sible conformations. 

For LMS and MS2 the integrated residence time 
maps are almost identical. It means that both methods 
during the folding actually sample the same configu­
rations. T h e features observed in the integrated 
residence t ime maps for LMS/MS2 are qualitatively 
similar to that obtained in CMC simulations. With the 
increase of temperature the amount of time spent in 
semi-compact states decreases, while the non-compact 
states with one or two formed first level clusters 
become more probable (Fig. 4, a). However, there are 
several pronounced differences between these maps 
for CMC and LMS/MS2. For LMS/MS2 there is an 
additional region of intermediates at (3:3). At small 
temperatures these intermediates coexist with the 
semi-compact intermediates . T h e non-compact inter­
mediates for LMS/MS2 are well separated and the 
totally unfolded state become dominant for much 
lower temperatures (40—50) than in the case of 
CMC. 

T h e integrated residence time maps for sequence 
2 are shown in Fig. 4, b. T h e maps obtained by CMC 
are fundamentally different in two ways. First of all, 
for small temperatures two deep non-native minima at 
points (6:4) and (6:2) are occupied with high prob­
ability (compact intermediates) , whereas the single 
non-native minimum for sequence 1 with the same 
energy - 1 5 0 is never occupied. With the increase of 
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Fig. 4. Integrated residence time maps for sequence 1 (A) and sequence 2 (B) for various temperatures obtained in LMS, MS2 and CMC 
simulations. Colors represent the amount of time spent by the sequence in the given point, white corresponds to zero, black to the maximum 

temperature a second region of non-compact interme­
diates with 1 or 2 contacts appear , but these contacts 
are all not native. This is in contrast with the results 
obtained for sequence 1, which show a non-compact 
intermediates with the native contacts corresponding 
to the first level clusters. 

These features a re easily explained by conside­
ring the hierarchical character of folding of sequence 
1. During the folding of sequence 1 the clusters of the 
first level are likely to appear first. If the temperature 
is small enough the clusters will be very stable, and 
their persistence will not allow the chain to sample 
certain parts of conformational space. This space can 
be accessible only after clusters ' destruction. Non-
native minimum at the point (5:5) belongs to these 
conformations, so the chain is very unlikely to reach 
it. Instead the chain will form some structures with a 
misfolded cluster a r rangement and with a higher 
energy. With the increase of temperature these con­
formations will dissociate into individual clusters: 
there appears the region of non-compact interme­
diates. Since all contacts a re inside the clusters, they 
are native. The clusters break apar t only at very high 
temperatures leading to complete unfolding. 

A different picture is observed for sequence 2 that 
lacks clustering behavior. In this case the whole 
conformational space remains accessible at small tem­
peratures. As a result, t he non-native compact states 

a re frequently occupied. With the increase of tem­
perature these conformations dissociate directly to 
completely unfolded state with 1 or 2 accidental non-
native contacts. 

LMS and MS2 maps for sequence 2 are also 
identical and essentially different from CMC maps 
(Fig. 4, b). There a re no compact intermediates 
observed in LMS/MS2 simulations even for lowest 
computationally possible tempera tures . Highly popu­
lated states at the points (5:3) and (3:2) a re observed 
instead. With the increase of tempera ture these states 
disappear and the completely unfolded state do­
minates . These results suggest that both LMS and 
MS2 move sets a re not efficient in finding local energy 
minima for sequence 2, thus the chain is not trapped 
in the lowest non-native minima. CMC finds these 
minima and allows observing the chain trapping. 

Kinetics. For kinetics studies the first folding 
times of 1000 independent MC runs were grouped 
into 20—50 bins forming the his tograms. All obtained 
histograms were accurately fitted by the single expo­
nential functions А-ехрЫ/тц). T h e mean folding 
t ime rv was obtained from histogram fitting. 

Sequence 1. Tempera ture dependencies of the 
mean folding times obtained for sequence 1 are shown 
in Fig. 5, a. The shapes of the curves obtained by all 
simulation techniques a re similar. An optimal tem­
perature is about 20 in the case of CMC and LMS and 
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Fig. 5. Mean folding times for sequence 1 (A) and sequencq 2 (B) 

about 15 in the case of MS2. However the mean 
folding times a re quite different. LMS shows the 
slowest folding, which is more than 10 times slower 
than in the cases of MS2 and CMC. It is quite 
possible that such a large difference in the folding 
times is caused (at least partially) by the native 
topology of the sequence 1 which belongs to the 
so-called «buried-end» sequences. Lacking collective 
motions, LMS is likely to get into the topological 
trap» which can re tard the folding dramatically. 

The MS2 and CMC modeling of chain folding is 
not sensitive to the chain topology because of the 
collective motions allowed. Both methods show fast 
folding, however, CMC is faster in terms of the 
minimal mean folding time. 

Temperature dependence of the mean folding 
time for CMC is more shallow which leads to mush 
smaller folding times at high temperatures . This 
correlates with the peculiarities on the integrated 
residence time maps: the completely denatured state 
becomes dominant under CMC only at the tem­
peratures 80—100, which a re much higher than 
40—50 observed for MS2. 

Sequence 2. T h e temperature dependencies of the 
mean folding times obtained for sequence 2 a re shown 
in Fig. 5, b. Since sequence 2 does not have buried 
ends, there is no topological t rap in the case of LMS 
simulations. However, LMS still shows the slowest 
folding. Both LMS and MS2 give qualitatively similar 
temperature dependencies of the mean folding times 
with the optimal temperature about 20. Meantime, the 
temperature dependence obtained by CMC simula­
tions is very different. An optimal temperature is 
twice higher (about 40) and the high temperature tail 
of the curve is much more shallow, which makes the 
folding time almost tempera ture independent for high 
temperatures . T h e minimal folding t ime for CMC is 

j -i—і—і—і—і—і—і—і—і—і—і—"—і—і—і—"—і—'—і—і—і—•—і—'—і—1—і—<—і 
5 1.1 2.1 35 45 55 65 75 

Temperature 

obtained in LMS (7) , MS2 (2) and CMC U) and MS2 simulations 

larger than given by MS2 but smaller than given by 
LMS. 

Hierarchical and non-hierarchical folding in dif­
ferent simulation techniques. It is necessary to em­
phasize that both sequences that a re analyzed here 
have identical number of native contacts and the same 
energies of the native state, so the differences in 
kinetics of folding appear only due to the differences 
in folding mechanisms. In order to fold correctly, the 
hierarchical sequence 1 has to form stable clusters, 
while the non-hierarchical sequence 2 has to attain 
the sheet topology that does not require the formation 
of clusters. 

As it is evident from Figs 4, b and 5, a, the mean 
folding t ime of sequence 1 in LMS is 10 times longer 
in comparison with sequence 2. We believe that this 
is because of topological trapping in the former 
sequence possessing buried ends . Unfortunately there 
are no open-end hierarchical sequences of length 12 
which have a non-degenerate ground state (it was 
verified by exhaustive enumerat ion) , so it is not 
possible to test the possibility of trapping by direct 
comparison. Since the collective motions a re important 
in this case and LMS does not describe them, we 
concentrate on comparison of MS2 and CMC data. 

An optimal folding temperature for sequence 1 in 
CMC simulations is well below the point where the 
clusters of the first level begin to dissociate. This 
means that the fastest folding is achieved in the 
conditions, in which these clusters maintain integrity 
during the folding process. In contrast , the optimal 
folding temperature for the non-hierarchical sequence 
2 is much higher. This is the result of formation on 
the folding pathway of misfolded intermediates , which 
have to unfold in order to proceed toward the native 
state. So an optimal temperature in this case should 
be high enough to effectively break the non-native 
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Fig. 6. Average energies for the 
final 100 steps of folding of 
sequence 1 and sequence 2 at 
different temperatures obtained 
in MS2 and CMC simulations. 
The folding proceeds from left 
to right. The last point corres­
ponds to the native state 

contacts. These misfolded states a re well seen on the 
CMC integrated residence t ime maps for sequence 2 
as compact intermediates. They correspond to deep 
local energy minima, which are efficiently sampled by 
CMC. 

A different picture is observed with LMS/MS2 
simulations. They show similar optimal temperature 
of 15—20 for both sequences. LMS/MS2 simulations 
disregard formation of the stable clusters, so when 
simulated by these methods the sequence 2 does not 
get trapped in the misfolded s tates . Corresponding 
integrated residence t ime maps show that indeed the 
deep local energy minima are not sampled. This 
explains why the optimal temperatures are identical 
for both sequences. 

Since hierarchical sequence 1 forms two most 
proximal contacts in the sequence (contacts 1—4 and 
9—12, see Fig. 2) it is expectable that it will fold 
faster than sequence 2, which has only the contacts 
between remote regions of the chain. This is really 
observed in the case of CMC simulations. They show 
that hierarchical sequence 1 is a fast folder (Figs 4, b 
and 5, a). In contrast, MS2 simulations show almost 
identical folding times for the both sequences. 

So, how can it happen that according to MS2 
simulations the non-hierarchical sequence 2 folds as 
fast as hierarchical sequence 1? In our view this 
behavior is a direct consequence of the fact that MS2 
move set includes unspecific, and thus unnatural , 
collective motions. Particularly MS2 allows rigid rota­
tions of the long linear segments , which have a pivot 

point at the end move as rigid «sticks». In reality such 
long segments will never behave as sticks but ra ther 
as highly flexible soft ropes, which tend to form a 
compact coil. T h e native be ta-shee t topology of sequ­
ence 2 can be easily reached in MS2 in just several 
«stick» moves, which lead to overestimation of the 
folding rate . In contrast , CMC allows only the rota­
tions of clusters, which a re indeed compact rigid 
structures stabilized by internal bonds . Linear chain 
segments in CMC will never be translocated as a 
whole. T h e formation of a beta-sheet structure in 
CMC occurs on a much longer t ime scale than the 
formation of compact clusters, which is physically 
more realistic. 

Energetics of the final folding steps. In order to 
bet ter unders tand the folding mechanism and kinetics 
of the studied sequences, we have calculated the 
averaged energies of the final 100 iterations for 
sequences 1 and 2 (Fig. 6 ) . T h e remarkable feature 
of the obtained relations is the presence on the 
average folding pathway of the definite energy bar­
rier. For the temperatures smaller t han the optimal 
folding temperature the average energy of the chain 
increases slowly with t ime and reaches the maximum 
of approximately - 1 0 0 . 

This process is accompanied by the decrease in 
the total number of contacts and by increase in the 
number of native contacts (not shown) . This signifies 
the appearance of the states that a re non-compact but 
enriched in native contacts. T h e state with the 
maximal energy is observed only 2 iterations before 
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complete folding in the case of MS2 and 7—10 
iterations before in the case of CMC. The maximum 
observed in MS2 simulations is very sharp , while in 
the case of CMC a smooth broad region is observed 
at the top of the barrier . After reaching the maximum 
value the energy decreases rapidly on the motion 
toward the native s tate . With the increase of tempe­
rature the barr ier becomes less pronounced and 
finally disappears at the temperature close to the 
optimal folding temperature . In this case the curve is 
essentially «flat» up to the critical point where there 
appear a rapid collapse to the native state. For higher 
temperatures the average energy decreases smoothly 
up to the native state start ing from the point, which 
is 20—30 iterations before the complete folding. T h e 
observed behavior is a direct consequence of the 
existence of semi-compact and compact misfolded 
intermediates, which are detected on the integrated 
residence t ime maps (Fig. 4 ) . Destruction of these 
misfolded conformations requires the overall decrease 
of the chain compactness and increase of its energy. 

Thus , an energy barr ier appears on the folding 
pathway, which has to be surmounted by the chain in 
order to reach the native state. Very sharp collapse to 
the native state, which lasts only 1—3 iterations, 
suggests that there is a bottleneck on the folding 
pathway. It is determined by chain conformations on 
the top of the energy barr ier , the majority of which 
have the energy of - 1 0 0 . In the case of sequence 1 
this corresponds to two correctly formed clusters of 
the first level, which then combine to form the native 
state. In the case of sequence 2 the bottleneck 
conformations correspond to the single correctly for­
med beta-hairpin (containing either the residues 1—8 
or 5—12) stabilized by two native contacts. The rest 
of the chain remains unfolded. Native state is reached 
when the second hairpin forms. Sharpness of the 
barrier observed in MS2 simulations reflects un­
specific na ture of the collective motions described in 
MS2. This fact can be easily explained in the case of 
sequence 1. After the ends of the chain at tain correct 
topology, they can be assembled to the native struc­
ture by the single «stick» move. This can happen with 
the majority of conformations, which from the top of 
the energy barrier , and an abrupt collapse toward the 
native state makes the barr ier sharp . In contrast , in 
the case of CMC the number of conformations contai­
ning two correctly formed first-level clusters on the 
pathway to the native s tate is much smaller. Once the 
clusters a re formed, they will diffuse for a while until 
the unfolded linker segment at tains the correct con­
formation after that single rotation can assemble a 
native structure. T h e diffusion step, which does not 
involve the changes in the chain energy, makes the 

barr ier broad. Similar considerations a re applicable to 
the sequence 2. 

Conclusions. The results of this work demon­
strate the difference in folding behavior between 
non-hierarchical and hierarchical sequences, which 
have been revealed by all used simulation methods. 
In the case of the non-hierarchical sequence all 
simulations result in similar values of the folding 
rates . However, CMC is much more efficient in 
finding local energy minima, which leads to much 
higher optimal folding temperature in comparison 
with LMS and MS2. Due to the fact, that LMS 
disregards collective motions, it underest imates the 
folding rate . In contrast , MS2 overestimates it due to 
the unspecific na ture of allowed collective motions and 
the necessity to involve the physically unjustified 
«stick» moves. CMC seems to provide the most 
accurate description of the collective motions and thus 
shows intermediate folding rates. 

In the case of the hierarchically organized se­
quence the LMC algorithm fails to produce realistic 
folding ra tes , which is probably a consequence of 
topological trapping in the sequence with buried ends. 
Meantime, MS2 and CMC, which allow collective 
motions, demonstra te very similar maximal folding 
rates CMC is a bit faster. Comparison of the ener­
getics of the last folding steps shows that CMC 
describes diffusive motions of the stable clusters and 
the dynamics of the open segments accurately. Collec­
tive motions in MS2 are described in a less realistic 
way because this method makes no difference be­
tween open segments and stable compact clusters. 
This leads to overestimation of the clusters ' mobility 
and to unnatura l dynamics of the open segments. 

The CMC algorithm shows directly the reduction 
of effective conformational space caused by cluster 
formation. Due to this process even at initial steps of 
folding certain regions of conformational space beco­
me unavailable for the sequence. We show that CMC 
and LMS/MS2 algorithms sample very different parts 
of conformational space. This is a direct consequence 
of unspecific na ture of LMS and MS2 move sets, 
which provide an inadequate description of collective 
dynamics. 

The amino acid sequences can be roughly clas­
sified into fast and slow folders. Should this clas­
sification depend on the simulation method used? 
Probably not, and since our s tudy shows that the 
applied methods are not equivalent in following the 
folding kinetics, we have to make a choice in favor of 
the method that suggests a physically more realistic 
picture of folding events. We observe that the hierar­
chical sequence in CMC is a fast folder, while in MS2 
both hierarchical and non-hierarchical sequences 
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show very similar folding times. This provides us the 
reason to believe that hierarchically organized sequ­
ences fold in a hierarchical manner , and the sugges­
ted CMC algorithm provides a step for a more 
realistic description of this process. 

In our simulations we were able to demonstrate 
that the average folding pathway is not a continuous 
decrease of the chain energy toward the native state. 
For low temperatures the folding sequence has to 
surmount some energy barr ier breaking the non-
native contacts of initially formed misfolded confor­
mations, and this slows down the folding process. 
With the increase of temperature the compact and 
semi-compact misfolded states become unstable and 
the energy barrier disappears providing the maximal 
folding rate. Fur ther increase of temperature destabi­
lizes non-compact intermediates , which are essential 
for correct folding, and thus decreases the folding 
rate again. 

Thus , our simulations demonstra te not only an 
exceptional importance of collective motions in the 
folding simulations but also an importance of phy­
sically correct description of collective motions. In this 
case the folding process can not be adequately des­
cribed neither in MC simulations with the local move 
set (such as LMS) nor in simulations with unspecific 
collective motions (such as MS2). We believe that in 
these cases the accounting for specific collective 
motions i. e. for cluster dynamics (as it is imple­
mented in CMC) provides much more realistic des­
cription of the folding pathways and kinetics. 

C. О. Єсижвський, О. П. Демченко 

Моделювання ієрархічного фолдингу білків у простій ґратковій 
моделі за допомогою кластерного методу Монте-Карло 

Резюме 

Досліджено роль специфічних колективних рухів та кластерної 
поведінки у фолдингу білків з використанням простих дво­
вимірних граткових моделей. Проведено порівняльний аналіз 
пептидів з ієрархічною та неісрархічною будовою. Моделюван­
ня здійснювали за допомогою трьох методів: стандартного 
методу Монте-Карло з локальним набором рухів, стандарт­
ного методу з неспецифічними колективними обертаннями та 
кластерного методу Монте-Карло (CMC) запропонованого 
авторами для реалістичного моделювання динаміки класте­
рів. Показано, що шляхи та кінетика ієрархічного фолдингу не 
можуть бути адекватно описані звичайними методами. У 
цьому випадку врахування кластерної динаміки у методі CMC 
виявляє важливі риси ієрархічного фолдингу. Визначено, up для 
реалістичного моделювання ієрархічного фолдингу потрібно 
використовувати розрахункові методи, які враховують спе­
цифічні колективні рухи. 

С. А. Есилевский, А. П. Демченко 

Моделирование иерархического фолдинга белков в простой 
решеточной модели с помощью кластерного метода 
Монте-Карло 

Резюме 

Исследована роль специфических коллективных движений и 
динамики кластеров в фолдинге белков с использованием про­
стых двухмерных решеточных моделей. Проведен сравнитель­
ный анализ фолдинга пептидов с иерархической и неиерархиче­
ской структурой. Моделирование осуществляли с помощью 
трех методов: стандартного метода Монте-Карло с локаль­
ним набором движений, стандартного метода с неспецифиче­
скими коллективными вращениями и кластерного метода 
Монте-Карло (CMC), предложенного авторами для реали­
стичного описания динамики кластеров. Показано, что пути 
и кинетика иерархического фолдинга не могут быть адекват­
но описаны стандартными методами. В этом случае учет 
кластерной динамики в методе CMC выявляет важные осо­
бенности иерархического фолдинга. Обнаружено, что для реа­
листичного моделирования иерархического фолдинга должны 
использоваться методы, учитывающие специфические коллек­
тивные движения. 
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