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The metalloenzymes are proteins with enzymatic activity which contain metals tightly bound in their active sites
to display a chemical action. This review describes the recent developments and success of using computational
methods and algorithms for designing industrial enzymes. A recent approach based on functional amino acids or
peptides as characteristic molecular moieties and their conservations, has led to a significant expansion of the
field of enzyme designing or enzyme mimics. Evolutionary conservation is accounted to consider designing en-
zymes while the metalloenzymes are a major concern due to their extensive role in catalytic activity and stability.
The enzymes from methanogens may provide useful biocatalysts and may be even more valuable for biotrans-
formation reactions, but their biotechnological applications are restricted. Therefore, a method based on the
evolutionary hypothesis of conserved domain of sequences obtained from methanogens would make a significant
interest in synthetic enzyme biotechnology.
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The transitions metals are essential cofactors in the phy-
siology of all organisms. Unfortunately, naturally avai-
lable enzymes are usually not optimally suited for the
industrial applications due to a lower stability of the en-
zymes under process conditions [1]. The protein engi-
neering is an alternative strategy for changing different
enzyme properties simultaneously [2]. The develop-
ment of enzyme technology has been recently shown
by a progress in the theory concerning a mode of enzy-
mes function and how it is related to their primary struc-
ture through the formation and configuration of their
3D structures [2, 3]. Generally, an enzyme design is ba-
sed on the knowledge about the structure, architecture
and functional properties of native enzymes. It is well
known that enzymes contain a binding site and a cata-
lytic site consisting of two or more catalytic amino acid
groups [4, 5]. Exploitation of the diverse reactivity of

© Institute of Molecular Biology and Genetics, NAS of Ukraine, 2011

432

metal center cofactors has presented a profitable strate-
gy to introduce catalytic activity into proteins. Compu-
ter-aided enzyme modeling has taken an important ef-
fort to design metalloenzymes so as to perform chemi-
cal reactivity with good catalytic efficiency in biotrans-
formation processes.

Several different potential reactions toward a single
substrate are often exhibited on a metal centre for desig-
ning and engineering enzymes [6, 7]. The successful de-
sign of small monomeric proteins [8], protein oligo-
mers [9], and redesign of natural proteins to confer no-
vel functionality have been achieved earlier. The gene-
ration of active biocatalysts from dramatically reduced
amino acid alphabets provides a strong support for the
idea that the primordial enzymes were made from only
a handful of building blocks [9]. The success of current
protein design methods is based largely on optimizing
the packing of atoms. The proposed natural design pro-
perties were not necessary conditions for producing



CURRENT SCENARIO ON COMPUTER-AIDED METALLOENZYMES DESIGNING

List of enzymes computationally designed

Enzyme Approach Reference

Mn-superoxide dismutase ~CAChe system [25]

Molecular mechanics

Mn-superoxide dismutase method [26]

Mn-superoxide dismutase DEZYMER algorithm [7]

Nuclease Chemical modification [27]
of protein scaffold

Protease Chemical modification [27]

of protein scaffold

Deoxyribose-phosphate Recapitulation of ac- [28]
aldolase tive sites of native en-

zymes
Isochorismate pyruvate QM/MM methods [29]
lyase
Chorismate mutase Computing empirical [30]

valence bonds

Proteinase K Machine learning [32]
algorithms
B-Glycosidases Amino acid [33]

replacements

L-Aminoacylase Alternation of metal [34]

ions

Co-dependent
B-methylaspartate mutase

Molecular-evolution [11]
directed approach

Molecular-evolution
directed approach

Cs-dependent formyl-

tetrahydrofolate ligase [12]

well-folded and perhaps even functional artificial
proteins [10]. Chellapandi and Balachandramohan ha-
ve introduced an in silico approach to design similar
biocatalysts from small molecule mimics of enzyme
active sites by combining in a small molecule with
emphasis to evolutionary conservation of sequences
[11, 12].

Structural homology-based approach is a power-
ful approach, which has produced a number of new
designed metalloproteins [6, 13—15]. Dezymer [16,
17] and ORBIT [18] were the first computer based
approaches developed for designing metalloenzymes.
Metal Search [19] program has been developed to aid
for designing metal-binding sites into proteins [20].
Structure-based computational design techniques ha-
ve also been used to construct catalytically active si-
tes in proteins of known structure [10]. An increa-

sing effort has been made to combine rational design
features into Darwinian evolutionary protocols [21,
23]. TransCent program has been developed for sup-
porting the transfer of active sites from one enzyme to
an alternative scaffold [24]. Therefore, to effectively
develop a rational modeling paradigm for enzymes,
detailed understanding of the mechanism of arate de-
termining step in the catalytic process and a compre-
hensive database of chemical structures with their ra-
te data are required so far. The list of enzymes com-
putationally designed is presented in Table. Manga-
nese superoxide dismutase by molecular mechanics
calculations (CAChe system) [25, 26] and rational
design using DEZYMER algorithm [7], nuclease and
protease by modification of protein scaffold [27],
deoxyribose-phosphate aldolase by recapitulation of
active sites of native enzymes [28], isochorismate py-
ruvate lyase by quantum mechanics/molecular mecha-
nics [29], and chorismate mutase by computing empi-
rical valence bonds [30] have already been success-
fully obtained by computational approaches. How-
ever, these approaches are more complex and used
altered protein scaffold or amino acids. Unfortunately
the resulting models were significantly less effective
than the corresponding natural enzymes [31] and the
reasons for rather limited success are not completely
clear [30]. A few successful experimental enzyme de-
signs have been made for proteinase K invariant by
machine learning algorithms [32], B-glycosidases by
amino acid replacements [34], L-aminoacylase by al-
ternation of metal ions [34] in the recent years. Using
evolutionary conservation of catalytic domain, co-
balt-dependent -methylaspartate mutase [11] and ce-
sium-dependent formyltetrahydrofolate ligase [12]
constructs from the sequences of archaea [35] have
been already designed, and the designing strategy is
schematically represented in Figure. Chellapandi has
comprehensively reviewed the enzyme engineering
and designing algorithms and associated computa-
tional programs in conceptual trends, which will en-
sure a competitive edge in developing improved en-
zymes [36].

The application of wide range of archaeon enzy-
mes and the usage of organisms themselves in biotech-
nology are fairly restricted due to the complicated puri-
fication strategies and lack of expression systems. How-
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A schematic representation of enzyme designing strategy used in this
study

ever, the increasing interest in applying enzymes in in-
dustrial processes has spurred the search for biocatalysts
with new or improved properties. The use of biotrans-
formation in industry will raise as it has been claimed that
a doubling of the number of industrially established bio-
catalytic processes every decade is probable.
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11. Yennananoi

CyuacHui cLieHapiii KOMIT'I0T€PHOr0 KOHCTPYIOBaHHS

MeTano(hepMeHTIB

Pestome

Memanogepmenmu — ye 6inku, wo @yHKyioHyrOmv K pepmenmu.
Bonu micmams memanu, aKi 63a€Mo0iiomy 6 AKMUBHUX CAUMAXx, wo
3abesneuye IXHIO XIMIuHY akmueHicme. Y npedcmaeieHomy 0210i
ONUCAHO OCMANKI PO3POOKU Ma YCRIWHe 3ACMOCY8AHHs KOMN lomep-
HUX Memo0ig i aneopummis O KOHCMPYIOBAHHS. NPOMUCTOBUX ¢hep-
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MeHnmis. Buxopucmanns cyuacnozo nioxody Ha ocHo8i pyHKyioHnansb-
HUX aMIHOKUCIOM abo nenmuois sk XapakmepHux MONeKyIAPHUX KOM-
NOHeHmi6é ma iXHboi KOHCepP8aAMuEHOCMI 00360.1UN0 3HAYHO POIUUPU-
mu cgpepy Koncmpyosanus abo imimysanns pepmenmis. Egontoyitina
KOHCEPB8AMUSHIiCIb 8adICIUBA NPU KOHCMPYIOBAHHI (hepmenmis, cepeo
AKUX OCHOBHY 3aYIKABNIEHICMb NPeOCmasiaioms Memaniopepmenmu
uepes iXHIO Cymmesy posb Y KamaiimuyHiti akmueHoCmi ma cmaoins-
Hocmi. Depmenmu MemaHo2eHie Moxcyms cayzysamu 6iokamaniza-
mopamu i Hagimv 6ymu yinHiwumu 015 peaxyin biompancghopmayii,
00HaK ixne 3acmocysanisi y 6iomexnono2ii oomedicene. 3gaxcaiouu Ha
ye, Memoo, OCHOBAHUI HA e8ONOYIUHIN 2INOme3i NPpo KOHCep8amue-
HULl 00MeH NOCIO08HOCME, OMPUMAHUX I3 MEMAHO2EHI8, MOJICe CMd-
mu kopuchum y chepi biomexnonoeii cunmemuuHux gpepmenmis.

Knrouogi cnosa: komn’romephe KOHCMpPYI0BAHHA MeManiogpepmen-
mu, Memano2enuy, eGOoNIOYiUHA KOHCEPBAMUBHICIb.

11. Yennananou

CoBpeMeHHBIH ClIeHapuii KOMIBIOTEPHOTO KOHCTPYUPOBAHUS
MeTauI0(epPMEHTOB

Pesrome

Memannogepmenmor — smo benxu, ynkyuonupyrowue Kkax ghpepmen-
mol. OHU codepoicam Memanivl, 83aumMoOeliCmeyiomue 6 aKmueHbIX
catimax, umo o6ecneyugaem ux XUMu4eckyio akmugHocms. B oannom
0030pe onucanvl nocredHue paspabomii U YCneuiHoe npumeHenue
KOMNbIOMEPHBIX MEMOO08 U AN2OPUMMOS OISl KOHCIMPYUPOBAHUSL NPO-
MululieHHbIX pepmenmos. Hcnonb3osanue cogpemMenno20 nooxooa na
OCHO6€ (PYHKYUOHANbHBIX AMUHOKUCIOM UIU NENMUOO8 KAK XAPAaK-
MEPHBIX MONEKYIAPHBIX KOMHOHEHMO8 U UX KOHCEePEAMUSHOCU NO-
360UNO 3HAYUMENbHO PACUWUPUMb Ccepy KOHCMPYUPOBAHUS UNU
UMUMUPOBAHUS.  (PepMeHmO8. DE0MOYUOHHAS KOHCEPEAMUBHOCIIb
8AJICHA NPU KOHCIMPYUPOBAHUU DEPMEHMO8, CPedu KOMOPbIX OCHOB-
HOU UHMepec npedCmasisAm Memaiiloghepmenmsl 61a200apsi UX 3Ha-
YUMEeNbHOU POIU 8 KAMATUMUYECKOU AKMUEHOCU U CIMAOUTbHOCIU.
Depmenmuvl MEMAHO2EHO8 MO2YM CIYHCUMb OUOKAMATUIAMOPAMU U
Oadice Obimb bonee yeHHbIMU 01 peakyull uomparchopmayuu, Ho ux
npumeHeHue 8 GUOMeEXHON02UU 02panuteHo. Beaeocmeue smoeo me-
MO0, OCHOBAHMYIIL HA IGOTIOYUOHHOU 2Unomese 0 KOHCEPEAMUEHOM
O0oMeHe NociedogamenvHocmet, NOLYYEHHbIX U3 MEemaH02eH08, MO-
JiIcem cmamv NONE3HLIM 8 chepe OUOMEXHONO2UU CUHMEMUYECKUX
Gepmenmos.

Knrouegvie cnosa: komnviomepHoe KOHCMPYUPOSAHUE MEmAio-
epmenmos, memanozeHvl, IGOMOYUOHHASL KOHCEPEAMUBHOCD.
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