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Aim. Creation of glyphosate-resistant canola plants expressing bifunctional hybrid desC::licBM3 gene. In the
hybrid gene the sequence of DesC desaturase of cyanobacterium S. vulcanus without plastid targeting was fused
with the sequence of thermostable lichenase reporter LicBM3 gene. Methods. Agrobacterium tumefaciens-
mediated transformation, PCR, quantitative and qualitative determination of lichenase activity, genetic
analysis. Results. Transgenic canola plants, carring the enolpyruvat shikimat phosphate syntase gene (epsps),
conferring on plants resistance to phosphonomethyl glycine herbicides (Roundup), as well as the desC::licBM3
gene, were selected. The presence of transgenes was confimed by multiplex PCR. The epsps gene expression in
canola was shown at the transcription level, during in vitro growth and after greenhouse herbicide treatment.
Activity of the licBM3 gene product as a part of hybrid protein allowed quantitative and qualiative estimation of
the desaturase gene expression. Inheritance of heterologous genes and their expression in the first generation
were investigated. Conclusions. Transgenic canola plants were obtained, the presence of trangenes in plant
genome was proved and expression of the target genes was detected.

Keywords: Brassica napus, desC, epsps, licBM3, lichenase.

Introduction. Due to climate changes, the plant
resistance to stress factors of various origin, including
low temperatures and phytopathogens, becomes of
great importance.

One of the plant adaptive mechanisms to cold is an
increase in the unsaturation of fatty acid residues in
cellular membranes, sustaining the required membrane
fluidity at low temperatures [1]. An important role in
this process is attributed to fatty acid desaturases,
catalyzing the transformation of a single bond between
carbon atoms in acyl chains (C-C) into the double bond
(C=C). According to the current data, the synthesis of
A9-mono-unsaturated fatty acids in higher plants
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occurs in plastids, while the formation of additional
double bonds may occur in both plastids and endo-
plasmatic reticulum. However, some reports demon-
strate the cloning of genes, encoding A9-acyl-lipid
desaturases, which supposedly function outside plas-
tids [2].

The application of biotechnological approaches
allows the obtaining of plants with the increased con-
tent of mono- and polyunsaturated fatty acids in the
membrane lipids. The Agrobacterium tumefaciens-
mediated transformation resulted in the introduction of
the gene coding for A9-acyl-lipid desaturase of cyano-
bacterium Anacystic nidulans into the Nicotiana taba-
cum L. genome. This enzyme catalyzes the formation
of cys-double bond in position A9 in both 16- and
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18-carbon saturated fatty acids. Due to this fact the
created plants have considerably increased number of
unsaturated fatty acids in the majority of membrane
lipids which leads to significant enhancement of cold
tolerance [2]. Similar changes in cold tolerance were
observed in tobacco plants, obtained via direct (using
polyethylene glycol) transformation of protoplasts
using vectors, containing either cDNA of A9-desa-
turases of cyanobacterium A. nidulans or cDNA of
A9-desaturase of cold-resistant potato strain Solanum
commersonii [3]. The introduction of heterologous
desaturases of various origin results in comparable
increase of cold tolerance. The expression of
A9-desaturase of cyanobacterium S. vulcanus [4] and
FAD7 desaturase of Arabidopsis thaliana L. [5] in
tobacco leaves also allows the transformants to endure
considerable cold stress. The potato plants of Solanum
tuberosum L. become more resistant to low tempe-
ratures after the introduction of A12-desaturase gene of
Synechocystis sp. PCC 6803 [6], as well as the gene of
A9-desaturase of wild potato S. commersonii [7].

The data on an impact of stress factors on avocado
fruit demonstrate that the increase in the activity of A9-
desaturase (AvFADY) resulted in higher resistance to
the pathogen fungus Colletotrichum gloeosporioides
[8].

Brassica napus L. is the third among the most im-
portant oil-bearing crops in the world (after palm and
soya, faostat.fao.org/site/567/default.aspx#ancor) by
the amount of yielded oil. The selection of Brassica
napus L. is aimed first of all at the increase in the yield,
oil-bearing, and the improvement of oil quality. This
may be achieved also by obtaining plants, resistant to
phytopathogenic fungi and with increased cold
tolerance.

This work was aimed at canola plants, resistant to
Roundup herbicide, which express the desaturase DesC
of cyanobacterium S. vulcanus (without the signal of
transporting into plastids) as a part of the bifunctional
reporter gene for further testing of transgene lines for
resistance to stress factors of different origin.

Materials and Methods. Plant material. Asep-
tically cultivated spring canola plants, Obreey cultivar,
were used as material for transformation. The seeds
were kindly provided by N. V. Slisarchuk (National
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Scientific Center “Institute for Soil Science and
Agrochemical Research”, UAAS).

Genetic transformation was performed using leaf
explants in accordance to the method, previously
suggested by us [9]. The transformation was performed
simultaneously with two vectors, each of them was
cloned in A. tumefaciens, GV3101 strain. Vector
PBISN-desC::licBM3 contains genes desC (A9-desa-
turase) of cyanobacterium S. vulcanus and licBM3
(thermostable lichenase) of Clostridium thermocellum
[10], fused in one reading frame under the control of
35S promoter of cauliflower mosaic virus, and the se-
lective gene of neomycinphosphotransferase II (nptIl)
under the control of nos promoter. Vector pCB133
carries genes epsps (target) under the control of 35S
promoter of cauliflower mosaic virus and bar (selec-
tive) under the control of nos promoter. The regene-
rants were selected on the media with phosphinotricin
(PPT, 5 mg/l).

PCR-analysis. The total DNA was isolated from the
leaf tissue of the transformed plants using the method
[11]. The reaction was performed with 40 ng of plant
DNA as well as the corresponding primers in the
concentration of 0.5 uM and nucleoside triphosphates —
500 uM, 1 unit of Tag DNA-polymerase, the reaction
buffer contained 50 mM KCI, 10 mM tris-HCI (pH 9,
25°C), 0.1% triton X-100 and 2 mM MgCl,. The total
volume of the mixture was 20 pl. The gene epsps was
identified using the primers, amplifying the fragment of
498 b.p. [12]. During multiplex PCR the genes desC
and licBM3 were determined using the primers,
amplifying fragments of 949 and 642 b.p. respectively
[13]. DNA, isolated from the non-transformed plants
(negative control) and 1 ng of plasmid vector (positive
control) were amplified with the same primers and in
the same conditions using the Mastercycler personal
thermocycler (Eppendorf, Germany). The parameters
of amplification reaction corresponded to [12, 13]. The
PCR products were analyzed by electrophoresis in 1 %
agarose gel in tris-acetate buffer.

The isolation of the total RNA and RT-PCR was
performed according to [14].

Testing for resistance to glyphosate. The sterile
solution of N-phosphonomethylglycin (2.5 mg/l) was
added to the hormone-free nutrient medium MS [15]
after autoclaving to test the resistance in vitro. The root
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formation and general state of plants were estimated
three weeks later. Three-week-old adapted plants were
sprayed with Uragan Forter 500 SL herbicide under
cover following the manufacturer’s recommendations
(Syngenta, Switzerland). The working solution con-
tained 2.5 mg/l of glyphosate. The impact of the
preparation was estimated 7 days later.

The qualitative evaluation of the thermostable
lichenase activity was performed according to [13].

The quantitative evaluation of the thermostable
lichenase activity was performed according to the
modified method [16], estimating the concentration of
free reducing sugars after the reaction of total protein
extracts of the leaf tissue with lichenan. The leaves
were ground in a singlefold volume of 100 mM tris-HCI
buffer (pH 8.0), containing 0.1 M NaCl, 5 mM Na,-
EDTA and 10 mM mercaptoethanol, and centrifuged at
13,000 g (4°C) for 5 min. The supernatant (20 pl) was
added to 50 ul of 0.5 % aqueous solution of lichenan,
diluted with water to 500 pl and incubated at the tem-
perature of 65—70 °C for 95 min. Then we introduced
500 pl of DNS-reagent (1 % dinitrosalicylic acid and
0.05 % sodium sulfite in 1 % sodium hydroxide solu-
tion), 165 pl of 40 % K-Na-tartrate and kept the
mixture in the water bath at 95-100 °C for 10 min,
cooled till 4 °C, and kept for 15-20 min at room
temperature.

The optic density of solutions was measured at 510
nm using BioPhotometer (Eppendorf, v.1.35).

The concentration of reducing sugars was evaluated
using the calibration chart for glucose. The activity of
the enzyme, forming 1 pmol of reducing sugars per 1 s,
was accepted as a unit of activity. The specific activity
was evaluated per protein amount.

The determination of total soluble protein was
performed using Bradford’s method [17].

Results and Discussion. Three lines of canola
plants on the basis of Obreey cultivar with selective ge-
nes nptll and bar, and target genes epsps and
desC::licBM3, were obtained by simultaneous co-
cultivation of canola explants with two agrobacterial
vectors (pCB133 and pBISNdesC::licBM3).

Gene nptll, conferring the resistance to kanamycin,
was selective in the construction pBISN-desC: :licBM3.
It is known that a number of difficulties arise at the
regeneration stage in the process of using kanamycin

with Cruciferae plants. Low doses of this antibiotic
promote the occurrence of false transformants, which
perish under selective pressure during the subsequent
cultivation. High amounts of kanamycin hinder the
very process of regeneration [ 18]. The solution may be
found in temporary removal of selective pressure which
prolongs the process of obtaining transformants. The
aim of experiments with transgene lines with two target
genes was to obtain the plants with desC gene as a part
of the hybrid gene and simultaneous avoiding the
negative impact of kanamycin.

It was previously demonstrated that the PPT pre-
sence increases the number of canola regenerants du-
ring the direct transformation of protoplasts using poly-
ethylene glycol [19]. The selection on the media with
PPT was successfully performed by us previously for
obtaining transgene canola plants with the promo-
ter-free bar gene [9], the gene of animal cytochrome
[20], and the gene of human interferon alpha 2b [21].
Therefore, in these experiments we also used the vector
with T-DNA containing bar gene for the purpose of
selecting transformed plants on the media with PPT.

17 canola lines were selected after the regeneration
in selective conditions. The data of PCR-analysis
demonstrated the presence of introduced target genes
(epsps, desC::licBM3) in the nuclear genome of three
of them — Bnl8a, Bn18b, Bnl8¢c (Fig. 1, @, ¢). The
remaining lines are characterized by the presence of
two heterologous genes from pCB133 vector — epsps
and bar. The combined integration of two T-DNA was
observed with the frequency of 17.6 %. The simu-
Itaneous introduction of two and three T-DNA (with the
frequency of 30 and 9.5 %, respectively) was observed
in the experiments with A. thaliana with simultaneous
transformation of plants using three vectors with
different genetic constructions [22]. The plants with
two target genes, introduced by different vectors, were
obtained in the work with canola [23]. The experiments
on introducing different genes in one or several
constructions are performed to study and change
metabolic pathways, to obtain composite proteins or
protein complexes, and to investigate genetic control
and regulation [24]. We used this approach in our work
on the creation of transgene plants with the planned
target genes for selection using the most suitable for
canola selective agent phosphinotricin.
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Fig. 1 The results of PCR, confirming the presence in transformed canola plants of sequences of epsps gene (a: / — molecular weight marker; 2 —
DNA of pCB133vector; 3 —negative control, DNA of the initial plant; 4-7 — DNA of lines Bn18a, Bn18b, Bn18c and 18/133/7), desC and licBM3
genes (c: 1 —negative control, without DNA; 2 — molecular weight marker O’Gene-Ruler 100 bp DNA Ladder Plus, Fermentas, Lithuania; 3 —
negative control, DNA of the initial canola plant, Obreey cultivar; 4 — negative control, DNA of transgenic canola with cypl141gene, line
Bnl12/93/2; 5—DNA of line Bn18a with desC::licBM3 gene) [in transformed canola plants], as well as RT-PCR of transgenic canola plants (b: / —
molecular weight marker; § —- DNA of pCB133vector, positive control; 3, 5, 7 — amplification products after the synthesis of the first DNA strand
on mRNA matrix of lines Bn18a, Bn18b and Bn18c without the revertase (negative control); 2, 4, 6 — amplification products after the synthesis of
the first DNA strand with the addition of revertase of lines Bn18a, Bn18b and Bn18c

Further molecular and biological, biochemical and
genetic investigations we performed, analyzing the
plant lines with four introduced genes.

The expression of epsps gene in canola plants was
demonstrated at the level of transcription (Fig. 1, ¢). In
addition, it was tested in vitro while cultivating on the
medium with N-phosphonomethyl glycine (2.5 mg/l)
and during herbicide treatment in the greenhouse.

The plants of all three lines grew normally in vitro,
remaining green and capable of root formation without
any additional stimulation on a selective medium with
glyphosate (Fig. 2, a). The control non-transformed
plants were getting yellow and formed neither new
leaves nor roots.

In the greenhouse conditions the transformants
withstood spraying with the working solution of
glyphosate while control plants withered and were not
capable of further growth (Fig. 2, b).

The lichenase plate test (Fig. 3) was positive for all
the three lines which proves the expression of the
hybrid desC::licBM3 gene.

The initial transformants (Bnl8a, Bnl8b) were
planted in the greenhouse, where they adapted easily,
flowered and gave viable seeds by self-pollination. The
obtained seeds were cultivated in aseptic conditions on
the media with PPT (10 mg/l). No segregation by [the]
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resistance to phosphinotricin was observed which
indicates the integration of more than one copy of bar
transgene. The selected PPT-resistant seedlings were
passaged on the medium with kanamycin. The
seedlings, resistant to both kanamycin and PPT, were
tested for the lichenase activity (Fig. 3).

The quantitative evaluation of the enzyme activity
demonstrated its absence in the control plants, while its
level varied among the transgene lines (Table). Line
18b was remarkable for the highest lichenase activity.
Lines 18a and 18b/25 were characterized by
comparable, but considerably lower activity levels,
compared to line 18b (by ~ 40 % ). The lichenase
activity for line 18a/2 appeared to be lower than the
detection level. The initial transformants (18b and 18a)
had higher lichenase activity compared to the first
generation plants, obtained by self-pollination of the
initial lines (18b/25, 18a/2, 18a/b).

A diverse level of the lichenase activity in the
transgene canola lines indicates analogous differences
in the expression of the target gene of A9-desaturase as
a part of the hybrid gene. The level of gene expression
may depend on the integration locus of the foreign
DNA and the number of integrated transgene copies.
The similar results, reflecting evaluation of the target
gene expression by determination of the lichenase
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Fig. 2 Testing glyphosate resistance: a — two-week-old plants of the initial Obreey cultivar (Bn18) and line 18a in vitro on hormone-free agarised
MS medium with N-phosphonomethyl glycine (2.5 mg/l); b — three-week-old plants of Obreey cultivar (Bn18) and transgenic line 18a after the

treatment with herbicide Uragan Forte 500 SL in the greenhouse

Fig. 3 Qualitative determination of the activity of thermostable
lichenase in canola plants with desC::licBM3 gene. Into the wells in
agarized medium, containing lichenan, were introduced the extracts of
lines : / — 18b; 2 —initial Obreey cultivar (Bn18); 3 — 18a; 4 — 18a/6; 5 —
18a/2; 6 — 18b/25; 7 — tobacco lines expressing desC::licBM3 gene
(positive control)

activity in the hybrid protein, were obtained by the
method of zymograms of protein extracts of potato
plants, transformed by cry3aM::licBM2 gene for
protection from Colorado beetle [25]. Different activity
levels of lichenase in the hybrid DesA-LicBM3 protein

The lichenase activity in canola plants with licBM3 gene of the
thermostable lichenase of Clostridium thermocellum

Line ety o | RO 0| of
plate test) kanamycin protein)
18b + + 9,28
(c](s;rrlltlril) - Not detected
18a + + 5,52
18a/6 +— + 2,64
18a/2 +— + Not detected
18b/25 + + 5,02

were also registered in the potato plants with the
increased lipid content in the leaves and elevated
amount of unsaturated fatty acids in the membrane
lipids [6].

Conclusions. Therefore, the simultaneous intro-
duction of four genes in two independent vectors allo-
wed us to obtain the plants with functional hetero-
logous genes. The expression of epsps gene was de-
monstrated at the transcription level, in vitro and in vivo
(greenhouse). The determination of the /icBM3 gene
product activity as a part of the hybrid protein
permitted to evaluate the expression of desaturase
gene, fused with it. The inheritance of the introduced
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genes and their expression in the first generation were
revealed.
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Co3zganne ycTOWYUBEIX K Tiidocary pacTeHHi
Brassica napus L., s3xcipeccHpyIOIUX JecaTypasy
DesC unanob6axrepuu Synechococcus vulcanus

'MHCTUTYT KIIeTOUHOM GMOJIOrHH M TeHeTHUecKoil nHkeHepun HAH
YxpanuHsl
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Pestome

Lens. Cozoanue pacmenuil panca, ycmouuugbix K 2augocamy u 3Kc-
npeccupyiowux ougynkyuonansuvlii eubpuonwiii een desC::licBM3, 6
Komopom nociedosamenvrnocms oecamypasvl DesC yuanobakmepuu
S. vulcanus 6e3 cuenana mpancnopma é niacmuobl Ciuma ¢ HOC1e0o-
6aMENILHOCHBIO 2eHA PeNnoPMepHo2o beaka mepmo- cmaduiIbHoU -
xenasvl LicB Clostridium thermocellum. Memoowt. Agrobacterium
tumefaciens-onocpedosannas mpancpopmayus, I[P, kauecmsennoe
U KouYecmeeHHoe onpeodeneHue AakMmusHOCIMU MmepmocmaduIbHON -
Xxenaswvl, cenemuyeckuil ananus. Pesynomamut. [lonyuenvt mpanceen-
Hble  pacmeHus — panca, — Hecywjue — 06a  Yeleeblx  2eHd:
eHonnupysamuurumameocgamcunmasel (epsps), obecnevusaiouje-
20 YCMOUYUB0CMb pacmenull K 2epouyuoam Ha ocHoge pocgorome-
munenuyuna, u ecena desC::licBM3. Ilpucymcmeue mpanceenog 6
2eHOMe pacmeHull 00KA3aHo Memooom myavmuniexchou ITL[P.
OKenpeccus 2ena epsps nokKa3ana Ha yposHe mpaHcKpunyuu, 8 ycio-
susx in vitro u in vivo (menauya). Haruuue npooykma eena licBM3 &
cocmase 2ubpuUOHo20 6enKa NO38OIUNO OYSHUMb IKCNPECCUIO CAUMO-
20 ¢ Hum 2ena decamypasvl. IIpociesceno naciedoganue 686e0eHHbIX
2€HO086 U UX IKCHpeccusl 8 nepeom noxoneHuu. Boieoowt. [lonyuenvt nu-
HUU MPAHCEHHBIX PACMEHULl panca, noOmeepiHcOeno nPUCymcmeue
MPanceeHos 8 2eHoMe pacmeHull U OOKA3aHa IKCNPECCUsl Yeleablx 2e-
HO8.

Kurouesvie cnosa: Brassica napus, epsps, desC, licBM3, nuxena-
3a.
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CTBOpEHHS CTIHKUX 10 raidocaTty pociauH Brassica napus
L., sxi ekcnipecyioth necarypasy DesC mianoOakTepii

Synechococcus vulcanus

Pestome

Mema. Cmeopenns cmiiikux 0o 2epoiyudy Roundup pocaun pinaky,
wo excnpecyloms 0ighynxyionanvruil 2iopudnuil 2en desC::licBM3, &
sakomy nocaioosHicms decamypasu DesC yianobaxmepii' S. vulcanus
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0e3 cueHary mpancnopmy 8 niacmuou 3Auma 3 NOCIIO0BHICMIO 2eHd
penopmepnoeo binka nixenasu LicBM3 Clostridium thermocellum. Me-
moou. Agrobacterium tumefaciens-onocepeoxosana mpancgopmayis,
LJIP, saxicue i KinbKicHe U3HAYEHHS AKMUBHOCTI MePMOCMadiibHOT
nixenasu, eenemuynull ananiz. Pesynomamu. Ompumano mpanceenni
POCIUHU PINAKY, AKi HeCymb 08a YINbOBUX 2eHU: EHONNIPYSAMUUKI-
mamepocpamcunmasu (epsps), wjo 3abesneuye cmiluKicmes pociuH 00
2epbOiyudie Ha ocHosi gochonomemuneniyuny, i cena desC::licBM3.
Ipucymuicmo mpanceenis y 2eHOMi poCIuH NiOMEEPONCEHO MemoOoM
mynemunnexcroi I1JIP. Excnpecito 2ena epsps nokasano Ha pieHi mpauc-
Kpunyii, 3a ymog in vitro ma in vivo (menauys). Hasenicmoe npooykmy
eena licBM3 y cknadi 2ibpuonoeo 6inka 003601uU1a OYiHUMU eKcnpe-
cito 3numoeo 3 num 2ena decamypasu. IIpocmediceno ycnaoxysanms
86€0CHUX 2€eHI6 | IXHA eKcnpecis 6 nepuiomy NOKOniHHI. Buchoeku.
Ompumano RiHii MpaHCceeHHUX POCIUH PINAKY, NiOMEepO’CeHO npu-
CYMHICMb MPAHC2EHI8 Y 2eHOMI POCIUH | 008€0€eHO eKCNpecito Yinbo-
BUX 2CHIB.
Kunrouosi cnosa: Brassica napus, epsps, desC, licBM3, nixenasa.
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