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This review summarizes experimental data related to the studies of PI3K/mTOR/S6K signaling conducted at the
department of cell signaling. Analysis of novel S6Ks protein-protein interactions provided valuable information
for understanding molecular mechanisms of regulation of S6Ks functional activity and subcellular localization
mediated by PKC, CK2 and ROC1 ubiquitin ligase. We discuss the identification and functional analysis of novel
isoform of ribosomal protein S6 kinase — S6K2 and of mTOR kinase — mTORP, as well as their oncogenic proper-
ties. Identification of CoA synthase responsible for last two steps in CoA biosynthesis and characterization of its
interactions with S6K1 and other signaling molecules uncovere a potential link between mTOR/S6K signaling
pathway and energy metabolism through regulation of CoA biosynthesis. The data concerning new molecular
mechanisms of CoA synthase regulation are presented.
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Most organisms have evolved mechanisms for prompt
response to environmental changes by efficiently and
accurately altering gene expression and protein biosyn-
thesis. Proteins are produced as a consequence of new
mRNA synthesis through transcription regulation, but
translation of mRNA into protein is also regulated and
often has a defining role during the embryonic develop-
ment, memory formation and maintenance of normal
physiology. Therefore, mammalian cells have evolved
elaborate mechanisms for translational control, most of
which are sensitive to nutrient availability, cellular ener-
gy, hormones and growth factor stimuli.

The PI3K/mTOR/S6K pathway is a main signaling
pathway that integrates inputs from at least five major
intracellular and extracellular cues — growth factors,
stress, energy status, oxygen, and amino acids — to cont-
rol major processes, including protein and lipid synthe-
sis and autophagy (Figure). Alterations of this signa-
ling occur in many human diseases, including cancer,
obesity, type 2 diabetes, neurodegeneration and there
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are significant ongoing efforts to target pharmacologi-
cally this pathway (reviewed in [1]).

During almost 15 years research affords of our de-
partment were focused on structural and functional or-
ganization of mTOR/S6K-dependent signaling pathway.
Ribosomal protein S6 kinase 1 and 2 (S6K 1/2) together
with elongation factor 4 (4EF) binding protein (4EBP)
are the best-characterized substrates of mMTORC1 comp-
lex. S6K 1 was identified as an insulin/mitogen-activa-
ted protein kinase in mammalian cells, whose major
known substrate is the 40S ribosomal subunit protein S6.
It is known that the S6K1 gene encodes two proteins,
p70S6K1 and p85S6K1, via the use of alternative trans-
lational start sites. The predominant form, p70S6K1, is
expressed ubiquitously and is localised largely but not
exclusively in the cytoplasm, while a nuclear localiza-
tion sequence (NLS), found within the 23 amino acid N-
terminal extension unique to p8§5S6K1, may target this
isoform to the nucleus. Up to the date a number of additio-
nal S6K1 substrates have been identified implicating in-
volvement of S6K1 not only in the protein synthesis
regulations but in many other processes [1, 2].
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A novel S6K isoform, termed S6 kinase 2 (S6K2),
which has a highly conserved amino acid sequence com-
pared with that of p70/p85 S6 kinase (S6K1) within the
catalytic, kinase extension, and autoinhibitory pseudo-
substrate domains, was identified almost at the same ti-
me by several groups including our group [3—7]. The
S6K2 gene also utilizes alternative translational start si-
tes to produce two isoforms. The long form (p56S6K2)
differs from the short form (p54S6K2) by the presence
of a 13 amino acid extension at its N-terminus. Al-
though this N-terminal extension also bears a putative
nuclear localization signal, the existence of a nuclear lo-
calization signal at the C-terminus of S6K2 means that
both isoforms are predominantly localised in the nuclei
of quiescent cells. Both S6K 1 and S6K2 share a homo-
logous modular organization. The catalytic domains of
S6K1 and S6K2 share 83 % identity at the amino acid
level. The kinase extension and pseudosubstrate domains
are also very similar, and contain several conserved seri-
ne and threonine residues critical to the activation of
S6K1 and S6K2 that we confirmed applying site direc-
ted mutagenesis [8].

Interesting differences we found within the extre-
me N- and C-terminal regions that could be important
for the regulation of these kinases. It is thought that
these differences may direct the kinases to distinct com-
partments (e. g. the NLS found in the S6K2 C-terminus)
or to different molecular targets. For instance the C-ter-
minal PDZ binding domain in S6K1 that is absent in
S6K2 allows recruitment to the actin cytoskeleton via
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binding to neurabin. S6K2 meanwhile, contains a proli-
ne-rich region in its C-terminus which may facilitate in-
teraction with SH3 domain- or WW domain-containing
molecules [3].

Our further studies revealed differences in kinetics
of serum- and fibronectine-induced activation of cyto-
plasmic (short) isoforms of S6K 1 and S6K2 in transiently
transfected HEK293. We demonstrated that S6K2 kina-
se is activated earlier in response to serum and in addi-
tion is less sensitive to inhibition of mTOR-dependent
phosphorilation/activation by rapamycin, in comparison
with S6K 1. These differences indicate the existence of al-
ternative signaling mechanisms, involved in the regula-
tion of S6K2 activity and subcellular localization [9, 10].

For analysis of S6K 1 and S6K2 expression level and
kinases subcellular localization we generated a set of
monoclonal and polyclonal antibodies specific for N-
and C-terminal parts of S6K1/2 [11-13]. According to
our data S6K1 and S6K2 have a tissue specific expres-
sion profile with the highest level in brain and testis res-
pectively [14]. Analysis of S6Ks expression in tumor
cell lines and tumour tissues revealed a sufficiently in-
creased level of S6K1 and S6K2 in breast tumors [15].
These data are in agreement with the finding that the ge-
ne encoding S6K1, resides in the chromosomal region
17q22-17q923, which is often amplified in breast and lung
cancers [16].

Immunohistochemical analysis of S6K1 and S6K2
expression in human breast tumors as well as in other tu-
mors such as endometrial and thyroid confirmed an in-
creased level of S6K1/2 in tumour tissues [17-20]. In
addition we detected sufficient alterations in S6K1/2
subcellular localization. Nuclear localization of S6K1
and to a greater extent S6K2 has been found in breast
adenocarcinomas. In 80 and 25 % of breast adenocarci-
noma cases nuclear localization of S6K2 and S6K 1 cor-
respondently have been revealed [21, 22]. The score for
endometrial tumours was 18 and 8 % correspondently
[23]. Nuclear localization of S6Ks in epithelial cells of
normal tissues has not been detected.

The retention of S6K2 in the nuclei of malignant
cells may be caused by deregulation of nucleocytoplas-
mic shuttling and could subsequently affect cell growth
and proliferation, and our data suggest that nuclear ac-
cumulation of S6Ks (especially S6K2) is a distingui-
shing feature of the cancer cells. In addition we found
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correlation between nuclear accumulation of S6K2 (but
not S6K1) and Ki67 and PCNA expression that indica-
tes involvement of S6K2 in malignant cells growth re-
gulation [22]. In support to this observation using in vit-
ro 3D primary monolayer cell culture of thyrocytes, ob-
tained from undamaged follicles, we demonstrated that
down regulation of thyrocyte functional activity (dedi-
fferentiation) caused by the loss of follicle organization
was accompanied by subcellular redistribution (increa-
se in nuclear content) of S6K1 and S6K2 [24-26].

We have found, supporting oncogenic functions of
S6K, that increased protein expression levels of S6K2 in
both SCLC and NSCLC biopsies appear to correlate with
the development of chemoresistance. At the same time
these data suggest different functional activity of S6K1
and S6K2. Indeed we identified a novel FGF-2-induced
signaling complex comprising PKCe/BRaf and S6K2
but excluding S6K 1. The formation of this complex may
explain how S6K1 and S6K2 can be guided to different
cellular compartments to target distinct substrates despi-
te their high homology within the kinase domains [27].

The possibility of nucleocytoplasmic shuttling has
been proposed for both S6K1 and S6K2 based on the
presence of N-terminal NLS in S6K1 and two (N- and C-
terminal) nuclear localization signals in S6K2. How-
ever, the mechanism of its regulation has not been well
understood. In our further studies we have proposed a
possible mechanism for the regulation of nucleocyto-
plasmic shuttling of S6K2 by PKC-mediated phospho-
rylation [28]. The site of phosphorylation was identified
as S486, which is located within the C-terminal nuclear
localization signal of S6K2 and has no homologous in
S6K1. PKC-mediated phosphorylation at S486 does not
affect SOK2 activity but eliminates the function of its
nuclear localization signal and causes retention of an ac-
tivated form of the kinase in the cytoplasm.

To identify novel functional links of S6Ks we have
employed the yeast two-hybrid system to search for no-
vel S6K binding partners and used a full length S6K1
as «bait» [29-31]. One of the protein partner identified
was regulatory 3 subunit of protein kinase 2 (CK2). Bio-
chemical analysis revealed that catalytical o subunit of
CK2 phosphorylated S6K1 at Ser 17, but it did not affect
its enzymatic activity. According to the functional studies
using cell’s models the CK2-mediated S6K1 phospho-
rylation affects its nucleocytoplasmic shuttling and en-

hancers nuclear export. We also provided evidence that
nuclear export of S6K1 is mediated by a CRM1-depen-
dent mechanism [31-33].

Another identified protein partner was ROC1 ubi-
quitin ligase. Our data suggest the involvement of ROC1
in regulation of S6K 1 and S6K2 stability by ubiquitina-
tion and subsequent proteasomal degradation. Further-
more, we found that the site(s) of ubiquitination are lo-
cated in the kinase domain and that the N- and C-termi-
nal regulatory regions modulate the efficiency of S6Ks
ubiquitination. These studies suggest that S6K signaling
also could be regulated through the proteasome-media-
ted turnover of S6Ks [34, 35].

Upstream regulators of S6Ks, such as PDK1 and
protein kinase B (PKB/Akt), are recruited to the memb-
rane via their pleckstrin homology (PH) or protein—pro-
tein interaction domains. However, the mechanism of
integration of S6K into a multi-enzyme complex around
activated receptor of tyrosine kinases was not clear. Our
data indicate that S6 kinase is recruited into a complex
with RTKSs via Src mediated phosphorylation on tyrosi-
ne(s) in response to PDGF or serum [36].

Recently an oncogenic splice isoform of S6KI1
(p31) that has no catalytic activity has been identified.
Bioinformatical analysis suggests existence of splice
form for S6K2 as well. We have confirmed existence of
some of them including p110S6K2 form that according
to our data has predominantly nuclear localization [37],
but functional analysis of novel S6K splice isoforms is
in progress.

Among S6K1 interacting proteins identified by the
yeast two-hybrid screening one was represented by a
number of clones and had unknown functions. Bioinfor-
matical analysis of DNA sequence, molecular cloning
and detailed biochemical analysis revealed that this
protein mediates the last two steps in CoA biosynthesis
via 4'-phosphopantetheine adenylyltransferase and de-
phospho-CoA kinase activities, and termed as CoA syn-
thase (CoAsy) [38]. Molecular cloning and characteri-
zation of CoAsy provided us with necessary reagents re-
quired to study the specificity of interaction with S6K 1
that was confirmed by alternative approaches [39]. Co-
enzyme A functions as a carrier of acetyl and acyl groups
in living cells and is essential for numerous biosynthetic,
energy-yielding, and degradative metabolic pathways.
It is estimated that about 4 % of all cellular enzymes
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utilize CoA or its thioester derivatives as substrates.
Our study has uncovered a potential link between mTOR/
S6K signaling pathway and energy metabolism that re-
quires CoA and its thioester derivatives, but its physio-
logical relevance has to be further elucidated.

In our further studies we provided the evidence that
N-terminal sequence of CoAsy (amino acids 1-29) ex-
hibits a hydrophobic profile and targets enzyme to mito-
chondria where the final stages of CoA biosynthesis take
place and that activity of CoAsy is regulated by phos-
pholipids of mitochondria membrane [40].

Analysis of CoAsy expression in different tissues
revealed unknown before CoAsy f3 isoform enriched in
the brain. Molecular cloning confirmed existence of this
splice isoform possessing 29 aa extension at the N-ter-
minus [41].

Bioinformatical analysis revealed a number of seri-
ne/threonine and tyrosine phosphorylation sites within
CoAsy including N-terminal extension of CoAsy P as
well as motifs responsible for protein-protein interac-
tions. It demonstrates that CoAsy could be involved in
the complexes with signaling proteins in living cells
which may regulate enzymatic activities of CoAsy or
vice versa CoAsy may modulate some steps in signal
transduction in the cell in currently unknown way. In-
deed in our further studies we found that prolin rich re-
gion of CoAsy modulates interaction with number of sig-
naling molecules such as tyrosine kinases Fyn and CSK,
phospholipase Cy, p85 regulatory subunit of PI3K [42].
For p85 we have demonstrated an existence of functio-
nal complex of CoAsy on mitochondria. Unexpectedly,
significant changes of PI3K signaling pathway activity
were observed in experiments with siRNA-mediated
CoAsy knockdown providing additional evidence of the
role of CoA biosynthetic pathway in signal transduc-
tion [42, 43].

Further analysis of CoAsy protein-protein interac-
tions, that could be initiated by phosphotyrosines accor-
ding to the bioinformatical prediction, revealed several
signaling molecules. Shp2 protein tyrosine phosphata-
se is one of them. We have demonstrated that Shp2 me-
diates CoAsy dephosphorylation that leads to an increa-
se in CoAsy enzymatic phosphopantetheine adenylyl-
transferase activity. We, therefore, argue that CoAsy is
a novel potential substrate of Shp2 phosphatase and
phosphorylation of CoAsy at tyrosine residue(s) could

210

represent unrecognized before mechanism of modula-
tion of intracellular CoA level in response to hormonal
and/or other extracellular stimuli [44]. According to our
data, Syk and Btk tyrosine kinases can modulate CoAsy
phosphorylation in vitro and Src kinase in vivo as well.

Taking into account that alterations in PI3K-de-
pendent signaling very often occur at malignant trans-
formation, we analyzed how CoAsy expression affects
cell behavior. According to our data increased levels of
CoAsy protein have protective effect on cells in condi-
tions of growth factors deprivation and also support an-
chorage independent growth. Knock down of CoAsy
expression in cancer cell line (HepG2) by siRNA appli-
cation leads to the dramatic decrease in ability of these
cells to form colonies in semisolid agarose. Notably,
this ability is one of the hallmarks of cellular malignant
transformation [45].

For further studies of possible pathways implicated
in CoAsy regulation we applied mass spec analysis of
CoAsy protein complexes and identified EDC4 (RCDS)
protein as a novel binding partner of CoAsy. EDC4 is
best known as a central scaffold component of processing
bodies implicated in storage and degradation of mRNA.
Identification of the protein involved in degradation and
storing of mRNA rather than metabolic and/or regula-
tory enzyme in complex with CoAsy prompted us to
speculate about novel mechanisms of CoA biogenesis
regulation. We demonstrated that CoAsy/EDC4 comp-
lex formation is regulated by growth factors and is af-
fected by cellular stresses. In addition EDC4 strongly
inhibited the dephospho-CoA kinase activity of CoAsy
in vitro. Transient overexpression of EDC4 decreases
cell proliferation but further co-expression of CoAsy di-
minishes this effect. We believe that EDC4 might contri-
bute to regulation of CoA biosynthesis in addition to its
scaffold function in processing bodies [46—48].

One of the main upstream regulators of both S6K 1
and S6K2 is mTOR kinase that forms two functionally
different complexes mTORC1 and mTORC2 (review-
ed in [1] and Figure). We provided evidence of existence
of the mTOR splicing isoform, mTOR, which lacks
most of its protein-protein interaction modules, HEAT
and FAT, but retains domains responsible for FRB, pro-
tein kinase activity, and regulation (RD and FATC) [49,
50]. Importantly, mTORB could form complexes in vivo
with Raptor and Rictor, which are known companions
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of full-length mTOR (mTORa). Also, it readily phos-
phorylates characterized mTORp substrates, S6KI,
PKB/Akt, and 4EBP1, in vitro. In contrast to mTORa,
mTORR has the potential to shorten considerably the G1
phase of the cell cycle and to stimulate cell proliferation.
Significantly, overexpression of mTORp transforms im-
mortal cells and is tumorigenic in nude mice.

Our studies suggest that the regulation of cell proli-
feration via the mTOR pathway could be mediated by
mTORR, which acts as a protooncogene and therefore
could be a candidate for future anticancer drug disco-
very [49, 50].

The key upstream regulator of mTORCI is hetero-
dimer consisting of tuberous sclerosis 1 (TSC1; also
known as hamartin) and TSC2 (also known as tuberin)
that functions as a GTPase-activating protein (GAP)
for the Ras homolog enriched in brain (Rheb) GTPase.
The GTP-bound form of Rheb directly interacts with
mTORCI and strongly stimulates its kinase activity. In
turn activity of TSC1/2 complex is regulated by multiple
phosphorylations of TSC2 mediated by several kinases,
such as PKB/Akt, AMP-activated kinase (AMPK), ERK,
MK?2 and RSK1. However so far, very little is known
about the molecular mechanisms of TSC2 dephospho-
rylation. In the yeast two-hybrid screening, we have
identified a number of potential TSC2 binding partners
including a protein phosphatase 5 (PP5) [51- 52]. We
provided the evidence that the interaction between
TSC2 and PPS5 also occurs in mammalian cells and found
that this interaction is stronger in exponentially grow-
ing and serum stimulated cells when compared to se-
rum starved cells.

In addition, we demonstrated that PP5 dephospho-
rylates specifically TSC2 at sites, associated with its ac-
tivation via AMP kinase (AMPK) pathway. Taken toge-
ther, these results suggest that PP5 exerts negative regu-
lation on TSC1/2 function through dephosphorylation
of AMPK-mediated sites and in turn positively regula-
tes mTOR activity [53].

As it was mentioned above PI3K/mTOR pathway
is a major integrator of intracellular and extracellular
inputs. PI3 kinase is a main TORC1 and mTORC2 re-
gulator facilitating signals from mitogenic stimuli. PI3K
is located close to the cell membrane and interacts di-
rectly or through IRS protein with the intracellular do-
mains of growth factor’s and hormone’s receptors. Whi-

le the mechanism of PI3K activation signaling pathway
by extracellular stimuli has become relatively well un-
derstood, much less is known about negative regulation
of PI3K itself that should affect functional activity of
all pathway. Collaboration of several research groups
made possible identification of adaptor protein Rukl,
which forms complexes with the PI3-kinase holoenzy-
me in vitro and in vivo [54]. This interaction involves
the proline-rich region of Ruk and the SH3 domain of
the p85a regulatory subunit of the PI3 kinase. In con-
trast to many other adaptor proteins that activate PI3
kinase, interaction with Rukl substantially inhibits the
lipid kinase activity of the enzyme. Our data provide
evidence for the existence of a negative regulator of the
PI3 kinase signaling pathway that is essential for main-
taining cellular homeostasis.

A lipid phosphatase PTEN also negatively regu-
lates PI3K pathway by dephosphorylating the PI (3, 4,
5) P3 in D3 position, leading to the suppression of cell
growth and other PI3K/Akt-dependent processes. It is
logical that PTEN is functioning as a tumor suppressor
and is frequently deleted or mutated in many human ad-
vanced cancers [55]. For evaluation of PTEN regulato-
ry mechanisms we applied the yeast two-hybrid scre-
ening and identified a number of protein partners such
as MSP58, FABP4, IFNyR1, DNA J homolog, and eu-
karyotic translation elongation factor 1 alpha 1-like (pro-
state tumor-inducing protein 1) [56]. In more details we
investigate the interaction between PTEN and FABP4
[56-58]. FABP4 is a known marker of terminal adipo-
cytes differentiation with tissue-specific expression in
adipocytes and macrophages. It transfers free fatty
acids between cellular compartments and is reported to
be associated with metabolic syndrome, obesity, and
atherosclerosis. Since mice deficient in FABP4 and its
homolog FABPS5 were protected from high fat diet-in-
duced metabolic syndrome, and display improved insu-
lin sensitivity, both proteins have been suggested as
potential therapeutic targets for drug development [59].
From the other side it is known that PTEN involved in-
to the regulation of FABP4 and other adipocyte-spe-
cific genes at the level of transcription. Altogether our
data suggest a possible link between PTEN function
and lipid metabolism and adipogenesis, but physiolo-
gical significance of PTEN-FABP4 interaction remains
to be investigated.
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Conclusion. In summary our data significantly ex-
tend our knowledge about PI3K/mTOR/S6K signaling.
Shortly, we identified and characterized a novel iso-
form of ribosomal protein S6 kinase — S6K?2 that shares
a high level of homology with known S6K1 isoform.
We proposed that these isoforms may have similar and
different functions with S6K1 that was further confir-
med by other researches.

So far, a number of S6K substrates, other than S6
protein, are identified. Most of them are common for
both kinases but some are specific only for particular
S6K isoform (reviewed in [2]).

Our data suggest that both isoforms are implicated in
cell malignant transformation and are overexpressed in
numerous tumors. At the same time we demonstrated
that nuclear accumulation S6K in tumor cells could be
a hallmark of malignant transformation suggesting that
modulation of S6K1/2 subcellular localization as well as
S6K1/2 activity could be an effective approach in can-
cer treatment.

We proposed molecular mechanisms of nucleocy-
toplasmic shuttling of S6Ks mediated by PKC-depen-
dent phosphorylation (for S6K2) and CK2-dependent
phosphorylation (for S6K1). Analysis of novel S6K
protein partners revealed the novel mechanism of regu-
lation of S6K1/2 stability facilitated by ROC1 ubiqui-
tin ligase. Our studies uncovered a potential link bet-
ween mTOR/S6K signaling pathway and energy meta-
bolism through CoA and its thioester derivatives by iden-
tifying CoA synthase, the enzyme that is responsible for
last two steps in CoA biosynthesis and involved in comp-
lex formation with S6K1 and other signaling molecu-
les. We provided evidence that regulation of CoAsy ac-
tivity is a second (after regulation of pantothenate ki-
nase activity) regulatory point in CoA biosynthesis that
could be mediated by the protein of processing bodies
EDC and Shp2 phosphatase. At the same time we have
demonstrated that alterations in CoA biosynthesis signi-
ficantly affect PI3K/mTOR signaling and cell behavior
suggesting that CoAsy could be a novel target for anti-
cancer therapy.

We claim that the regulation of cell proliferation via
the mTOR pathway could be mediated by newly identi-
fied mTOR isoform — mTORS, which acts as a protoon-
cogene and therefore could be also a candidate for fu-
ture anticancer drug discovery.
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Curnanphnit nuisix PI3K/mTOR/S6K — HoBi rpaBui Ta HOBI

(hyHKIIOHAJIBHI 3B’ 3KH

Pestome

B o2n50i npedcmasieno excnepumeHmainbHi peyibmamu O0CAIONCEHHs
cuenanrvHo2o uisxy PI3K/mTOR/S6K, ompumani y 6i00ini cuenanbrux
cucmem Kiimunu. AHaNi3 HeWOOAsHO BUSEIEHUX DLIKOBO-OLIKOBUX 63dE-
Mmooiti S6K nadae sadxciugy ingopmayiro ons po3yMinHs MOIEKYIAD-
HUX Mexanizmis peaynayii pynkyionanvnoi akmusnocmi S6K ma it cy6-
xkaimunnoi noxanizayii 3a ywacmi PKC, CK2 i yoikeumunnicasu ROCI.
0b62060piorombcs 0ani wooo idenmuikayii i pyHkyionarbno2o anani-
3y H080I i30¢popmu kinazu pubocomnozo oinka S6 — S6K2 i mTOR-
kinasu — mTORP, a makoow ixHix onkoeennux eracmueocmei. loen-
mugpixayis CoA-cunmasu, wjo € 6i0N0BIOAILHOIO 3a 084 OCMAHHIX ema-
nu 6iocunmesy CoA, a maxooic xapakmepucmuxa ii 63aemooii 3 S6K1
ma iHUWUMY CUSHATTLHUMU MOAEKYIAMU C8I0UAmb Npo ICHY8ANHS NO-
MeHYIUH020 36 'A3KY Midwe cueHanvuum uiisixom mTOR/S6K ma enepee-
MUYHUM MeMAOORIZMOM, ONOCEPeOKOBAH020 pe2YAYicio biocunmesy
CoA. Hagedeno oani cmoco8HO GUABNEHUX MONEKYIAPHUX MEXAHIZMIB
peeynayii akmuenocmi cunmasu CoA.

Kniwouosi cnosa: PI3K/mTOR/S6K, cuenanvhi cucmemu kiimumu,
6ink060-0i1K061 83aem00ii, Kinaza S6, cunmaza CoA.

B. B. Qunonenxo

Curnanbubiit yts PI3K/mTOR/S6K — HOBbIE HTPOKH 1 HOBbIE

(byHKL[HOHaJ'[BHLIe CBsA3H

Pestome

B 0630pe npeocmasnensvt sxcnepumenmanbvhvie pe3yiomansl Uccie-
o0osanus cuenanrvrozo nymu PI3K/mTOR/S6K, nonyuennvie 6 omoene
CUCHATILHBIX CUCIEM KNemKU. AHanu3 6H08b GblAGIEHHbIX DENK0B0-0eil-
Kosux gzaumoodeicmeuil S6K daem yennyio ungopmayuio 0ns nowu-
MAHUsSL MOIEKYIAPHBIX MEXANUSMO8 Peyasyuu QYHKYUOHAIbHOU aK-
musnocmu S6K u ee cyoxremounou noxanusayuu npu yuacmuu PKC,
CK2 u youkeumunaueazot ROCI. Obcyacoaiomes oannbvle, kacaoujue-
€51 UOeHMUDUKAYUY U PYHKYUOHATLHO20 AHAIU3A HOBOU UZ0POPMbL KU~
nasvl pubocomnozo venxa S6 —S6K2 umTOR kunazot —mTORP, a max-
orce UX OHKo2eHHbIX coticme. Moenmugurayus CoA-cunmaszel — pepmen-
ma, omgeuaroweeo 3a 06a nocieonux smana o6uocunmesa CoA, u ana-
au3z ee 83aumooeticmeusi ¢ SOK 1 u Opyeumu cueHabHbLMU MOIEKYAaAMU
CBUOCMENbCMBYION O CYWeCmMBOGANUU NOMEHYUATLHOU CBA3U MEHCOY
cuenanvuovim nymem mTOR/S6K u snepeemuueckum memaboausmom,
onocpedosannvim pecyaayueil ouocunmesa CoA. IIpugedernvl danHble
0 BbIABNEHHBIX MOJIEKYIAPHBIX Mexanuzmax pezynayuu cunmaszvl CoA.
Knioueeswvie crosa: PI3SK/mTOR/S6K, cucnanvuvie cucmemol Kiemxi,
benkoeo-benkosvie ezaumooeticmeus, kunasa S6, cunmaza CoA.
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