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The eukaryotic nucleus harbors genomic DNA, which is tens of thousands of times greater in linear size than the

nuclear diameter. Its high condensation is due to DNA packaging in chromatin, and DNA wrapping around nuc-

leosomal globules is a key step in the process. A histone octamer, which forms the nucleosomal globule, interacts

with DNA via electrostatic contacts. DNA–histone interactions are rather tight and prevent nucleosomal DNA

from being accessed by various enzymes and transcription factors. At the same time, nucleosomes do not prevent

transcription and other processes related to the genetic function of DNA. The review considers the structure and

diversity of nucleosomes and the central role they play in regulating transcription. Special emphasis is placed on

how internucleosomal interactions contribute to genome accessibility to transcription machinery and how nuc-

leosomes are removed from regulatory elements and transcription units in a controlled manner during trans-

cription elongation.
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Introduction. Histones are among the most conserved

eukaryotic proteins [1]. The mere fact points to an extre-

mely important role they play in the eukaryotic cell. For

a long time, studies of histones and chromatin focused

primarily on the structural aspect, elucidating how DNA

is compactly packaged in the nucleus [2]. However, the

role nucleosomes may play in regulating differential ge-

ne expression and other processes related to the geno-

me function came into consideration almost as soon as

nucleosomes were discovered [3]. It is beyond doubt

now that several regulatory mechanisms work at the le-

vel of DNA packaging in chromatin to control various

aspects of genome function, including the so-called

epigenetic memory mechanisms, which play a key role

in establishing the identity of differentiated cells. The

transcription-regulating role of nucleosomes is a main

focus of this review. Special emphasis is placed on how

the nucleosome structure and positioning on DNA are

associated with the regulation of transcription. A limi-

ted number of model loci – such as the beta-globin ge-

nes of vertebrates or PHO5, GAL1-10, and HIS3 of

yeasts – were used for many years to study functional

activity of the genome organized in chromatin. The re-

sults obtained with the model systems were extrapola-

ted to the whole genome. High-throughput sequencing

technology developed in the past decade allowed a num-

ber of methods, such as ChIP-seq, Dnase-seq, and others,

to be used to verify the structural–functional correlations

at the whole genome level. We have tried to involve the-

se new data wherever possible.

First, the structures of the basic nucleosomal partic-

le and 10-nm chromatin fiber, which is composed of

nucleosomes, are briefly considered in the review. Then

we discuss the modern data that indicate a lack of re-

gular interactions between nucleosomal particles in

the eukaryotic nucleus. Emphasis is placed on the spe-

cifics of nucleosome positioning on DNA and prima-

rily on nucleosome-free regions, which usually harbor
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various regulatory elements of the genome. Transcrip-

tion of nucleosomal DNA is also considered. The final

part describes the current views of the modulation of

internucleosomal interactions and its role in regulating

transcription.

Nucleosome fiber is a basic structure of chroma-

tin. The 10-nm nucleosome fiber is the level of DNA

packaging in chromatin that is best understood now [4,

5]. The fiber is a DNA molecule interacting regularly

with protein globules known as the nucleosome cores.

A DNA region of 145–147 bp is wrapped around each

globule. The DNA region forms 1.65 left-handed super-

helical turns. The globule consists of eight core histo-

nes. Having a modular organization, the globule is a

complex of an (H3–H4)2 tetramer and two H2A–H2B

dimers [6]. The structure of a nucleosomal particle (a

core with DNA wrapped around it) was solved to 1.9 �

by X-ray analysis [7]. The histones of the octamer are

organized in a left-handed helix, which sterically mat-

ches the superhelical turns of the wrapping DNA frag-

ment. The histone arrangement along the DNA molecu-

le is as follows: the H2A–H2B dimers contact DNA at

the entry and exit of the nucleosomal particle, while the

(H3–H4)2 tetramer contacts the central part of the DNA

region wrapped around the nucleosomal globule. The

nucleotide sequence-independent interaction of the nuc-

leosome core with DNA is due to ionic, hydrogen, and

hydrophobic bonding of the proteins with the DNA su-

gar–phosphate backbone. Two structural and functio-

nal domains are recognized in the core histones. The do-

mains are a histone tail (~ 20–35 nonstructured N-ter-

minal amino acid residues) and a histone fold (the other

~ 80–100 residues), which consists of three�-helical re-

gions linked by small loops. Two short (10–14 residues

each) helices of the histone fold flank a longer helix,

which consists of 28 residues. Along with additional se-

condary structure elements unique to each of the core

histones, the histone fold ensures the majority of histo-

ne interactions with nucleosomal DNA and other histo-

nes. A DNA region between two neighbor nucleoso-

mes is known as the linker and varies from 10 to 90 bp

among different organisms, different cells, and different

genome regions [8]. Histone H1, which substantially

differs in both size and structure from the core histones,

can bind to the linker at the nucleosome entry–exit si-

tes, thus closing two full superhelical turns. Histone H1

is presumably involved in maintaining the supranucleo-

somal packaging levels [9, 10]. The nucleosome fiber

is a basic structure of eukaryotic chromatin. The only

exceptions are dinoflagellate chromatin [11] and male

gamete chromatin in many eukaryotic groups, including

mammals [12].

A conserved character was emphasized for nucleo-

somal particles over many years. Now it is clear that

nucleosomes are not all identical. Modified nucleoso-

me forms occur along with canonical nucleosomes in

chromatin. To produce these forms, variant histones

are incorporated in nucleosomes and posttranslational

modifications made to histones of the nucleosomal glo-

bule. More than one hundred of posttranslational modi-

fications have been observed in histones to date [13, 14],

of which the best known are acetylation (at lysines),

methylation (at lysines, arginines, and histidines), phos-

phorylation (at serines), poly-ADP-ribosylation (at glu-

tamates), ubiquitination, and SUMOylation (at lysi-

nes). Proline cis–trans isomerization is also possible.

The development of new methods, especially those ba-

sed on mass spectrometry [15], allowed the identifica-

tion of new histone posttranslational modifications, such

as O-glycosylation at serine and threonine [16], formy-

lation and crotonylation at lysine, and hydroxylation at

serine [17].

The main targets of posttranslational modification

occur in the nonstructured N-terminal tail domains of

histones [13, 14], although exceptions are possible; i. e.,

several residues acting as targets for functionally impor-

tant modification are in the globular histone regions [18,

19]. As already mentioned, many variant histones exist

along with the canonical one; they are encoded by sepa-

rate genes and can be incorporated in a nucleosome in

place of their canonical counterparts (via a replication-

independent mechanism, while canonical nucleosomes

are assembled on newly synthesized DNA molecules).

The nucleosomes that incorporate variant histones often

differ from canonical nucleosomes to a substantial ex-

tent and perform special functions, for example modula-

te transcriptional activity [20–23] The variant histones

characterized most comprehensively include CENP-A

(centromeric H3), H3.3, macroH2A, H2A.Bbd, H2A.Z,

H2A.X, and H5 (variant H1) [24].

Lateral internucleosomal interactions and the 30-

nm fiber. It was believed until recently that a nucleoso-
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mal thread folds in vivo to produce a regular structure

of 30 nm in diameter, which is known as the 30-nm fi-

ber. In vitro, these structures form in the presence of his-

tone H1 or high concentrations of divalent cations [25,

26]. Two main models were advanced for the nucleoso-

me thread folding in the 30-nm fiber. One suggests that

the 10-nm fiber folds into a solenoid containing 6 nuc-

leosomes per turn (one-start helix) [25]. According to

the other model, a nucleosome thread forms a zigzag

structure (two-start helix) [27–29]. Several other, less

common models were discussed along with the above

ones [30]. While the fine organization of the 30-nm fi-

ber was a matter of dispute, it seemed unquestionable

until recently that 30-nm fibers occur in the eukaryotic

nucleus. As experimental methods improved and the in-

terpretation of experimental findings was refined, the

question arose as to whether 30-nm chromatin fibers ac-

tually exist in vivo in both interphase nuclei and meta-

phase chromosomes [31–34]. A molten polymer model

was proposed on the basis of new findings to describe

the folding of the 10-nm fiber in the interphase nucleus

[31–33]. The model postulates that the 10-nm fiber pro-

duces an irregular dynamic structure via internucleoso-

mal interactions between its distant regions «in trans».

This fold is thought to provide for a more plastic chro-

matin packaging as compared with the 30-nm fiber,

thus eventually facilitating all chromatin-related proces-

ses [31–33]. The molten polymer model allows spatial-

ly close nucleosomes to form the same internucleoso-

mal interactions that were observed for structures like

the 30-nm fiber, but the interactions are not regular in

the molten polymer, arising and breaking down in a sto-

chastic manner. Indeed, one of the key interactions in

the molten polymer is a contact of the N-terminal do-

main of histone H4 with an acidic patch of the H2A–

H2B dimer belonging to another nucleosome, that was

detected in an X-ray analysis of tetranucleosomes pro-

ducing a zigzag structure (two-start helix) [28, 35].

Nucleosome depletion is characteristic of active

regulatory elements. In spite of their dynamic charac-

ter [5], nucleosomes prevent, to a certain extent, a free

access to DNA for various protein factors [36, 37]. To

bind to DNA, the majority of general and specific trans-

cription factors require that the regular nucleosome ar-

rangement on a DNA thread be locally disrupted to ge-

nerate a nucleosome-free region (NFR) or a nucleoso-

me-depleted region (NDR) [38, 39]. The regions are se-

veral hundreds of base pairs in size and can be mapped

as DNase I-hypersensitive regions [40–42]. Various re-

gulatory elements of the genome usually occur in NFRs

and NDRs [43–47]. It is possible to say that, compared

with the prokaryotic genome, the eukaryotic genome is

repressed on default and that transcription is regulated

largely by modulating the genome accessibility to trans-

cription machinery [48, 49].

First, the generation of NFRs and NDRs is neces-

sary for assembly of the preinitiation complex on a pro-

moter [50]; i. e., active promoters are always NDRs [39,

51]. It is typical of higher eukaryotes that chromatin re-

modeling complexes work to release the promoters from

nucleosomes [52, 53], as is considered below. Another

strategy is used in the case of Saccharomyces cerevisiae

constitutive promoters, where nucleosome occupancy

depends to a substantial extent on the DNA sequence

[50, 54]. Although the binding of the nucleosome core

to DNA is not sequence specific, there are sequences

that more or less preferentially interact with the histone

octamer and those where the octamer is usually not as-

sembled. The probability for a nucleosome to land on a

particular DNA sequence depends to a great extent on

the DNA flexibility, that is, the capability of wrapping

around the nucleosomal globule. A poly(dA:dT) tract

is one of the sequences that poorly bind with the nucleo-

some core [55]. A typical constitutive yeast promoter

contains a poly(dA:dT) tract flanked by two sequences

that preferentially bind nucleosomes and are known as

the nucleosome positioning sequences (NPSs) [51, 56].

The nucleosome-free region usually harbors binding

sites for transcription factors, which recruit transcrip-

tion initiation proteins to the promoter [57].

A chromatin remodeling strategy is commonly utili-

zed to establish and maintain the NDR in inducible S.

cerevisiae promoters (TATA-containing promoters) and

gene promoters of other eukaryotes examined [50]. A

key role is played in this case by active ATP-dependent

nucleosome displacement involving chromatin remo-

deling complexes [52, 53]. Various chromatin remode-

ling complexes move the nucleosome cores along a

DNA molecule, remove them from DNA, replace cano-

nical histones with variant ones, and perform several

other functions. Chromatin remodeling complexes of

the SWI/SNF and ISWI families play a main role in es-
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tablishing and maintaining NDRs [58, 59]. NDRs are

partly occupied by nucleosomes in S. cerevisiae upon

depletion of the RSC complex, which belongs to the

SWI/SNF family [60]. Transcription factors known as

the pioneering factors are the first to initially recruit the

chromatin remodeling complexes to cis-regulatory ele-

ments to establish an NDR [57, 61]. The pioneering fac-

tors differ from the majority of transcription factors in

being capable of recognizing their sites on nucleosomal

DNA. A small site for a pioneering factor can occur in

the linker between two positioned nucleosomes [62, 63].

Other pioneering factors are capable of competing with

nucleosomes for binding to DNA [61]. The pioneering

factors recruit either chromatin-remodeling complexes

or the enzymes that introduce certain posttranslational

modifications acting to recruit chromatin remodeling

complexes. A primary remodeling of the promoter re-

gion can open DNA to the binding of other transcrip-

tion factors, which similarly facilitate the NDR mainte-

nance and extension [64].

An association between the presence of NDRs and

the enrichment of chromatin regions with certain histo-

ne marks was demonstrated at the whole-genome level

in many studies [39, 65–68]. Among the histone post-

translational modifications that serve to recruit chro-

matin remodeling complexes, lysine acetylation in the

tail domains of histones H3 and H4 plays an essential

role and is high in active promoters [39, 65–68]. Nuc-

leosomes that incorporate histone H3 acetylated at K9

and/or K27 recruit the remodeling complexes with a

bromodomain, which recognizes these modifications

[69, 70]. Acetylation additionally acts to increase acti-

vity of the complexes recruited [71, 72]. Histone ace-

tyltransferase activity is inherent in many conserved

coactivator complexes, including SAGA, p300/CBP,

and TAF1 [73–75].

Along with high-level acetylation, the incorpora-

tion of variant histones H2A.Z and H3.3 in the vicinity

of an NDR seems to contribute substantially to nucleo-

some depletion from active promoters [65, 76]. Nucleo-

somes with H2A.Z and H3.3 are less stable [77] and fa-

cilitate the NDR maintenance by chromatin remodeling

complexes [78]. According to recent data, such nucleo-

somes are almost always present within NDRs as well,

being easily displaced from DNA by certain protein fac-

tors [21]. The H2A–H2B dimers are replaced with the

H2A.Z–H2B dimers by the Swr1 complex of the SWI/

SNF family in yeasts (and by its orthologs SRCAP and

p400 in Metazoa) [79, 80]. Swr1 is recruited to acetyla

ted nucleosomes and has affinity for nucleosome-free

DNA [81].

Enrichment in H3K4me3 is one of the most distinct

features of active promoters [39, 65–68]. The modifi-

cation probably maintains NDRs apart from its other

putative functions [82]. A characteristic location of

H3K4me3 in the 5' regions of genes is related to the me-

chanism of this modification. Histone methyltransfe-

rase Set1, which is conserved among all eukaryotes and

is responsible for H3K4 trimethylation, binds to the

Ser5-phosphorylated C-terminal domain of initiating

RNA polymerase [83, 84]. As the polymerase starts

elongation and the posttranslational modification profi-

le of its C-terminal domain changes (phosphorylation

at Ser2 rather than at Ser5), Set1 dissociates, and the

level of H3K4 methylation grows lower [36, 85]. A

transcription-independent mechanism is also possible

for H3K4 methylation in vertebrates. In vertebrates,

Set1 is recruited to the promoters of housekeeping ge-

nes and master regulators of cell differentiation by Cfp1:

the promoters occur in CpG islands, Cfp1 is capable of

recognizing nonmethylated CpG dinucleotides, and

both Cfp1 and Set1 are components of one complex,

COMPASS [86, 87]. Many chromatin remodeling com-

plexes have protein components that interact with

H3K4me3 (this modification is recognized by the PDH,

Chromo, Tudor, MBT, and Zf-CW domains of various

proteins [88]). For instance, H3K4me3-binding domains

are responsible for the recruitment to promoters of hu-

man proteins CHD1 and BPTF, which are components

of chromatin remodeling complexes and have homo-

logs in many eukaryotes [89]. Histone acetyltransfera-

ses (HATs) contained in the SAGA and NuA3 comple-

xes are similarly recruited to promoters as other compo-

nents of the complexes interact with H3K4me3 [90].

In higher eukaryotes, NDRs are associated not only

with promoters, but also with transcription factor-bin-

ding sites located in distant regulatory DNA elements,

of which enhancers and insulators are two main classes.

Distant regulatory elements, rather than promoters, ac-

count for the vast majority of regions where NDRs are

established in some or other cells in Metazoa [39, 66,

91]. Enhancers are sequences of several hundreds of ba-
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se pairs in length and harbor binding sites for several

transcription factors, which are responsible for specific

activation of enhancer-regulated genes [92, 93]. Enhan-

cers can be up to tens or hundreds of kilobases away

from their target promoters [39, 66, 94]. The distance is

even greater than 1 Mb in exceptional cases [95]. Enhan-

cers can occur both upstream and downstream of the

target promoters, in both intergenic regions and introns

[96, 97]. Cases were documented where enhancers are

in coding gene regions [98].

Enhancer NDRs are far more tissue specific than

promoter-associated NDRs [39, 66, 99]. A close rela-

tionship is assumed for the establishment of NDR and

the establishment of the enhancer-associated H3K4me1

mark at enhancers [39, 65, 66, 68]. Pioneering factors

recruit histone methyltransferases, which establish an

H3K4me1-enriched region at the enhancer [100]. In

turn, H3K4me1 recruits the p400 remodeling complex,

which incorporates H2A.Z in nucleosomes [101, 102].

H2A.Z-containing nucleosomes are unstable, and a

small NDR consequently forms at the so-called poised

enhancers [99, 103, 104]. Differentiation signals activa-

te the poised enhancers by targeting additional tissue-

specific transcription factors and signaling pathway ef-

fectors to them, and the factors expand the NDR by re-

cruiting and activating the chromatin remodeling and

coactivator complexes possessing HAT activity, inclu-

ding p300/CBP as a main one [93, 105]. A main target

of p300/CBP is H3K27, and its acetylation is thought to

provide a mark associated with active enhancers [99,

103].

Along with enhancers, cis-regulatory elements

known as the insulators colocalize with nonpromoter

NDRs. Insulators are thought to perform a broad range

of functions, the main of which are to prevent the exten-

sion of repressive chromatin marks (barrier activity)

and to block the action of an enhancer on a promoter

when interposed between them (enhancer-blocking ac-

tivity) [106–108]. Insulators can display either both ac-

tivities or exclusively enhancer-blocking activity in a

transgenic reporter assay. Enhancer-blocking activity

is due to binding sites for a special protein group known

as the insulator proteins. TFIIIC is one of the most con-

served insulator proteins, acting additionally as a gene-

ral transcription factor to facilitate RNA polymerase III

landing on DNA [109, 110]. CTCF also performs the

insulator function in vertebrates [111, 112]. Drosophila

has not only TFIIIC and a homolog of vertebrate CTCF

(dCTCF) to sustain enhancer-blocking activity of insu-

lators, but also a number of other proteins: Su(Hw),

GAF, BEAF-32, and Zw5 [113, 114].

Insulator NDRs are enriched in H3K4me1 and the

H2A.Z variant [68, 115]. The mechanism that establi-

shes and maintains NDRs at insulators is most likely si-

milar to that of enhancers. It should be noted that verte-

brate insulators are less variable than enhancers and that

their positions are more or less constant in different

cells [66]. This is possibly related to the fact that the

main vertebrate insulator protein CTCF occurs in all

cells and acts as a pioneering factor, autonomously bin-

ding to its sites in chromatin regardless of whether or

not they are free of nucleosomes [61, 116].

Several insulators and enhancers display RNA poly-

merase II binding and enrichment in H3K4me3, thus

being functionally similar to promoters [117–120]. The

appearance of these features correlates with enhancer

activation in certain cells [119, 121, 122]. Moreover,

such enhancers and insulators can be transcribed to yield

unstable noncoding RNAs. The functional significance

of their transcription is a matter of discussion [119, 122,

123].

Remodeling of nucleosomal particles during

transcription elongation. Nucleosomal particles pro-

vide an obstacle for elongating RNA polymerase II in

vitro [124, 125]. In vivo, histone chaperones and chro-

matin remodeling complexes improve the efficiency of

elongation [126, 127], facilitating local partial nucleo-

some disassembly in front of the polymerase. Active

transcription alters the regular nucleosome arrangement

along the transcription unit, and the alteration may ha-

ve adverse consequences for the cell, e. g., activating

cryptic promoters (see below) [128]. Special mecha-

nisms work to ensure correct chromatin assembly be-

hind the passing elongation complexes [127, 128]. As

the elongating RNA polymerase II complex progresses

along nucleosomal DNA, one of the H2A–H2B dimers

dissociates, while the residual histone hexamer remains

associated with DNA [124, 129]. This mechanism ac-

counts for a higher exchange rate of H2A–H2B dimers

on transcribed genes [130, 131]. The exchange rate of

the total nucleosome core increases with increasing

transcription intensity, indicating that (H3–H4)2 tetra-
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mers can also dissociate when elongating complexes

pass frequently [130, 132, 133]. H2A–H2B dimer ex-

change probably involves the Asf1, Nap1, Spt6, and

FACT histone chaperones, which act together with the

SWI/SNF and RSC chromatin remodeling complexes

[134-139]. Histone acetyltransferases PCAF and Elp3,

which stimulate the function of chromatin remodeling

complexes, specifically interact with elongating RNA

polymerase II [140, 141]. SAGA and NuA4 are also re-

cruited to transcription units along with the elongating

complex to stimulate nucleosome displacement [142,

143].

On the other hand, nucleosome destabilization in

transcribed regions increases probabilities of spontane-

ous formation of NDRs. Some of them may happen in

DNA regions allowing transcription initiation [144–

147]. These regions are known as the cryptic promo-

ters, and several mechanisms work to repress their acti-

vity. An important role is played by the Chd1 and Isw1

chromatin remodeling complexes, which maintain regu-

lar nucleosome spacing in transcribed regions [148–

151]. The interaction of H2A–H2B dimers with the

Asf1, Nap1, Spt6, and FACT chaperones facilitates the

restoration of a nucleosomal octamer as soon as the po-

lymerase has passed. In addition, dynamic acetylated

nucleosomes are stabilized as Rpd3, Hos2, and Hda1

histone deacetylases are recruited to transcribed regions

[152, 153]. The Rpd3S deacetylation complex plays a

key role in the process. RpdS3 is recruited by the Ser2-

phosphorylated C-terminal region of elongating RNA

polymerase II [152, 153]. Rpd3S activity is higher on

H3K36me3-containing nucleosomes, which interact

with the Eaf3 and Rco1 subunits of the complex via

the Chromo and PHD domains [152]. H3K36 trimethy-

lation, which recruits histone deacetylases, is catalyzed

by Set2 histone methyltransferase, which also interacts

with the Ser2-phosphorylated C-terminal domain of

RNA polymerase II [154, 155]. Thus, the modification

provides a specific mark for the bodies of actively trans-

cribed eukaryotic genes [156, 157] and ensures that

low-level histone acetylation is restored in gene bodies

as soon as the transcription complex has passed [128].

Internucleosomal interactions and the regulation

of transcription. A number of modifications occurring

in canonical histones and the presence of some variant

histones affect, to a certain extent, the strength of inter-

nucleosomal interactions. The modifications modulate

the chromatin packaging and thereby act as an important

factor regulating gene expression. When nucleosomal

particles that strengthen the internucleosomal contacts

are incorporated in chromatin, chromatin is condensed

and DNA becomes less accessible to transcription ma-

chinery, while nucleosome modifications that hinder

the internucleosomal interactions facilitate a loosening

of chromatin and activation of its genes. The latter group

of modifications includes H4K16 acetylation, which

prevents the N-terminal domain of histone H4 from in-

teracting with the acidic patch of the neighbor nucleo-

some. Chromatin composed of H4K16ac-containing

nucleosomes cannot produce 30-nm fibers in vitro [158–

160] and is probably depleted of lateral interactions

with other nucleosomal fibers in vivo. Nucleosome ace-

tylation at other lysines can also affect in part the stabi-

lity of internucleosomal interactions [161]. Local de-

condensation is possibly a mechanism that sustains the

activator effect of acetylation on regulatory DNA ele-

ments. A similar effect is known for the incorporation

of variant histone H2A.Bbd. This variant histone lacks

the amino acid residues that are involved in the for-

mation of the negatively charged surface (acidic patch)

to interact with H4K16 [162]. Paradoxically, variant

histone H2A.Z, which usually colocalizes with NDRs,

allows a greater acidic patch area as compared with ca-

nonical histone H2A, thus strengthening the internuc-

leosomal contacts [163, 164].

A special group of histone modifications includes

H3K9me3 and H3K27me3. Nucleosomes with these

modifications recruit specific architecture proteins,

which facilitate a denser chromatin packaging. The re-

sulting condensed chromatin clusters at the periphery of

the nucleus, in the perinucleolar region, and nucleoplas-

mic foci known as the chromocenters. Chromatin of

denser regions was termed heterochromatin as opposed

to less compact euchromatin [165].

H3K9me3 binds with heterochromatin protein 1

(HP1). HP1 is highly conserved, and its homologs are

found in the majority of eukaryotes with the exception

of budding yeasts [166], where a similar function is per-

formed by the SIR proteins [167]. HP1 binds to

H3K9me3 via its chromodomain, which is in the N-ter-

minal region of the protein. The C-terminal region of

HP1 harbors the so-called chromoshadow domain,
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which provides for HP1 oligomerization [168]. Thus,

HP1-mediated lateral interactions between H3K9me3-

containing nucleosomes lead to chromatin condensa-

tion [169]. In addition, HP1 is capable of recruiting his-

tone methyltransferases Suv39h1/2 and SETDB1, which

are responsible for H3K9 trimethylation [170]. The re-

sulting positive feedback is one of the mechanisms

spreading the «histone code signal» to produce exten-

ded H3K9me3-enriched domains [171, 172]. Hetero-

chromatin, which contains highly repetitive DNA and

is enriched in H3K9me3 and HP1, occurs in pericent-

ric and subtelomeric regions in the majority of euka-

ryotes. However, it should be noted that neither HP1

[173, 174] nor H3K9 trimethylation [175] is essential

for maintaining the heterochromatic chromocenters

containing pericentric DNA. In addition, H3K9me3

domains that usually correspond to individual silent

genes occur in chromosome arms. For instance, more

than 10,000 H3K9me3-enriched domains with a medi-

an size of approximately 7 kb were observed in human

embryonic stem cells (hESCs). Similar domains are

about twice as large in fibroblasts [176]. Genome-wi-

de studies identified the so-called LOCK (large orga-

nized chromatin K9 modification) domains, which are

extended (~ 100 kb) genome segments enriched in his-

tone H3 di- or trimethylated at K9 [177].

H3K27me3 is another conserved histone modifica-

tion characteristic of eukaryotic heterochromatin [178].

The modification is often associated with facultative he-

terochromatin on genes – master regulators of develop-

ment [178, 179]. The H3K27me3 establishment and

mechanism of action are closely associated with Poly-

comb group (PcG) proteins. PcG proteins are compo-

nents of several complexes, of which PRC1 and PRC2

are best understood. PRC2 uses its component histone

methyltransferase EZH2 to trimethylate histone H3 at

K27. PRC1 binds to H3K27me3 and is thereby associa-

ted with sites of PRC2 activity [180]. In Drosophila,

PRC2 is recruited to target genes by PRE elements (Po-

lycomb response elements) which harbor consensus

binding sites for several repressor factors interacting

with PRC2 [181–183]. In vertebrates, the mechanism

recruiting PRC2 to target genes is not fully understood

[180]. An important role in the process is most likely

played by CpG islands, where the promoters of genes

targeted by PcG complexes mostly occur in vertebrates

[184, 185]. These are usually the promoters of genes in-

volved in maintaining pluripotency and master regula-

tors of differentiation.

In embryonic stem cells, H3K27me3 colocalizes

with the activating mark H3K4me3 in the promoters of

master regulators of differentiation to produce the so-

called bivalent promoters [157]. Depending on the cell

lineage, one of the marks is removed during differen-

tiation, and if it is H3K27me3 the gene is activated [157,

186]. A specific recruitment of PRC2 to target promo-

ters was observed in plants, Arabidopsis thaliana in par-

ticular, but a consensus similar to Drosophila PRE was

not identified [187].

The mechanism of promoter repression via

H3K27me3 and the PRC complexes is presumably re-

lated to the fact that, like HP1, PRC1 causes chromatin

compaction to prevent free access of transcription fac-

tors to the genes involved [188–190]. According to clas-

sical views, heterochromatin is a more compact form of

chromatin, and its compaction prevents heterochroma-

tin DNA from being accessed by transcription machine-

ry and thereby facilitates repression of heterochromatic

genes. However, there is evidence that accessibility to

large protein factors is similar between euchromatin and

heterochromatin. For instance, the genome is more or

less uniformly accessible to Dam methylation regard-

less of the heterochromatin nature of particular regions

in Caenorhabditis elegans and S. cerevisiae [191, 192].

Transcription factors expressed artificially display no

preference in binding to their sites in heterochromatin

or euchromatin [191, 193]. Only molecular complexes

of more than 1 MDa are specifically excluded from he-

terochromatic regions according to microscopic studies

[194–197].

Accessibility of heterochromatin or even more com-

pact chromatin of metaphase chromosomes to diffusion

of large protein complexes is probably related to the dy-

namic character of internucleosomal interactions, as as-

sumed in the molten polymer model (see above). Owing

to this dynamic character, individual nucleosomal par-

ticles can locally move relative to each other in the three-

dimensional nuclear space and periodically create chan-

nels to allow migration of protein complexes within

compact chromatin domains [33, 197].

Transcriptional activity was recently demonstrated

for the majority of Drosophila genes located in HP1-
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enriched pericentric heterochromatin [193, 198, 199]. As

for genes repressed by the Polycomb complexes, it was

found that a preinitiation complex is assembled and

transcription initiated on their promoters in both Dro-

sophila and mammalian cells, but elongation is blocked

[200–202]. Thus, none of the most important types of

eukaryotic heterochromatin prevents access to chroma-

tin for transcription machinery. Then what is the role of

chromatin compaction? The role is explained by the mo-

del that architecture proteins, such as SIR and HP1, and

the PRC1 complex do not act to restrict access of ac-

tivator factors to DNA, but rather function to create nuc-

lear compartments with a high concentration of inhi-

bitory factors, which ensure repression via other mecha-

nisms [203, 204]. In the case of Polycomb-dependent

repression, the mechanism possibly consists in PRC1-

mediated recruitment of RING1b ubiquitin ligase, which

ubuquitinates histone H2A at K119, to promoters. The

modification stabilizes the interaction of H2A–H2B di-

mers with (H3–H4)2 tetramers, and the elongating RNA

polymerase complex cannot pass through these nucleo-

somes [18, 205]. In addition, a compact arrangement of

repressed genome regions in the nucleus makes it pos-

sible to limit free diffusion of inhibitory factors in the

nuclear space, preventing their nonspecific activity

[206]. Well-known examples of such compact regions

are provided by peripheral and perinucleolar hetero-

chromatin, chromocenters, and PcG bodies [190, 204,

207, 208].

Conclusions. The structure of nucleosomal partic-

les and its changes that accompany transcriptional ac-

tivation or repression have been studied for almost half

a century. This level of chromatin packaging is the most

fully understood. However, several basic shifts occur-

red in the apparently firm views of nucleosomes and in-

ternucleosomal interactions in the past decade. Among

these mini revolutions, the 30-nm fiber as an important

level of chromatin packaging was rejected and changes

were made to the classical views of the heterochromatin

structure and the mechanisms of heterochromatic gene

silencing. A drift from focusing on one or a few model

loci to probing the chromatin organization on a geno-

me-wide scale is one of the main trends in recent stu-

dies of the lower levels of eukaryotic DNA packaging.

Another trend is collating the genome-wide maps of se-

veral epigenetic features, primarily the distributions of

histone modifications, variant histones, and NDRs. Both

of the trends are implemented in large-scale collabora-

tion projects, of which ENCODE and modENCODE

are the best known. A combination of the resulting data

sets with information obtained by «C» methods for the

spatial organization of chromatin [209–211] and high-

resolution microscopy findings will probably yield a

comprehensive picture of DNA packaging in the nea-

rest future and will help to better understand how the

packaging mode is related to functional processes oc-

curring in the cell nucleus.
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Íóêëåîñîìíà óïàêîâêà åâêàð³îòíî¿ ÄÍÊ ³ ðåãóëÿö³ÿ òðàíñêðèïö³¿

À. Ê. Ãîëîâ, Ñ. Â. Ðàç³í, À. À. Ãàâðèëîâ

Ðåçþìå

ßäðà åâêàð³îòíèõ êë³òèí ì³ñòÿòü ãåíîìíó ÄÍÊ, ë³í³éí³ ðîçì³ðè

ÿêî¿ ó äåñÿòêè òèñÿ÷ ðàç³â ïåðåâèùóþòü ¿õí³é ä³àìåòð. Áàãàòî â

÷îìó òàêèé âèñîêèé ñòóï³íü êîìïàêòèçàö³¿ çàáåçïå÷óºòüñÿ óïà-

êîâêîþ ÄÍÊ ó õðîìàòèí, êëþ÷îâèì åòàïîì ÿêî¿ º íàìîòóâàííÿ

ÄÍÊ íà íóêëåîñîìí³ ãëîáóëè. Îêòàìåð ã³ñòîí³â, ÿê³ ñêëàäàþòü

íóêëåîñîìíó ãëîáóëó, âçàºìîä³º ç ÄÍÊ çà ïîñåðåäíèöòâîì åëåêò-

ðîñòàòè÷íèõ êîíòàêò³â. ÄÍÊ-ã³ñòîíîâ³ âçàºìîä³¿ äîñòàòíüî

ì³öí³ ³ óòðóäíþþòü äîñòóï äî íóêëåîñîìíî¿ ÄÍÊ áàãàòüîõ ôåð-

ìåíò³â ³ òðàíñêðèïö³éíèõ ôàêòîð³â. Ó òîé æå ÷àñ íàÿâí³ñòü íóê-

ëåîñîì íå ïåðåøêîäæàº ïðîõîäæåííþ òðàíñêðèïö³¿ òà ³íøèõ

ïðîöåñ³â, ïîâ’ÿçàíèõ ç ðåàë³çàö³ºþ ãåíåòè÷íèõ ôóíêö³é ÄÍÊ. Â îã-

ëÿä³ ðîçãëÿíóòî ñòðóêòóðó ³ ðîçìà¿òòÿ íóêëåîñîì òà ¿õíþ öåíò-

ðàëüíó ðîëü ó ðåãóëÿö³¿ òðàíñêðèïö³¿. Îñîáëèâó óâàãó ïðèä³ëåíî

çíà÷åííþ ì³æíóêëåîñîìíèõ âçàºìîä³é ó çàáåçïå÷åíí³ äîñòóïíî-

ñò³ ãåíîìó äëÿ òðàíñêðèïö³éíî¿ ìàøèíåð³¿, à òàêîæ ðåãóëüîâàíî-

ìó âèäàëåííþ íóêëåîñîì ç ðåãóëÿòîðíèõ åëåìåíò³â ³ òðàíñêðèï-

ö³éíèõ îäèíèöü â ïðîöåñ³ åëîíãàö³¿ òðàíñêðèïö³¿.

Êëþ÷îâ³ ñëîâà: õðîìàòèí, ìîäèô³êàö³¿ ã³ñòîí³â, íóêëåîñîìà,

òðàíñêðèïö³ÿ.

Íóêëåîñîìíàÿ óïàêîâêà ýóêàðèîòè÷åñêîé ÄÍÊ

è ðåãóëÿöèÿ òðàíñêðèïöèè

À. Ê. Ãîëîâ, Ñ. Â. Ðàçèí, À. À. Ãàâðèëîâ

Ðåçþìå

ßäðà ýóêàðèîòè÷åñêèõ êëåòîê ñîäåðæàò ãåíîìíóþ ÄÍÊ, ëèíåé-

íûå ðàçìåðû êîòîðîé â äåñÿòêè òûñÿ÷ ðàç ïðåâûøàþò èõ äèà-

ìåòð. Âî ìíîãîì òàêàÿ âûñîêàÿ ñòåïåíü êîìïàêòèçàöèè îáåñïå-

÷èâàåòñÿ óïàêîâêîé ÄÍÊ â õðîìàòèí, êëþ÷åâûì ýòàïîì êîòîðîé

ÿâëÿåòñÿ íàìàòûâàíèå ÄÍÊ íà íóêëåîñîìíûå ãëîáóëû. Îêòàìåð

ãèñòîíîâ, ñîñòàâëÿþùèõ íóêëåîñîìíóþ ãëîáóëó, âçàèìîäåéñòâó-

åò ñ ÄÍÊ ïîñðåäñòâîì ýëåêòðîñòàòè÷åñêèõ êîíòàêòîâ. ÄÍÊ-

ãèñòîíîâûå âçàèìîäåéñòâèÿ äîñòàòî÷íî ïðî÷íû è çàòðóäíÿþò

äîñòóï ê íóêëåîñîìíîé ÄÍÊ ìíîãèõ ôåðìåíòîâ è òðàíñêðèïöè-

îííûõ ôàêòîðîâ. Â òî æå âðåìÿ íàëè÷èå íóêëåîñîì íå ïðåïÿòñò-

âóåò ïðîõîæäåíèþ òðàíñêðèïöèè è äðóãèõ ïðîöåññîâ, ñâÿçàííûõ

ñ ðåàëèçàöèåé ãåíåòè÷åñêèõ ôóíêöèé ÄÍÊ. Â íàñòîÿùåì îáçîðå

ðàññìîòðåíû ñòðóêòóðà è ìíîãîîáðàçèå íóêëåîñîì è èõ öåíòðàëü-
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íàÿ ðîëü â ðåãóëÿöèè òðàíñêðèïöèè. Îñîáîå âíèìàíèå óäåëåíî çíà-

÷åíèþ ìåæíóêëåîñîìíûõ âçàèìîäåéñòâèé â îáåñïå÷åíèè äîñòóï-

íîñòè ãåíîìà äëÿ òðàíñêðèïöèîííîé ìàøèíåðèè è ðåãóëèðóåìîìó

óäàëåíèþ íóêëåîñîì ñ ðåãóëÿòîðíûõ ýëåìåíòîâ è òðàíñêðèïöèîí-

íûõ åäèíèö â ïðîöåññå ýëîíãàöèè òðàíñêðèïöèè.

Êëþ÷åâûå ñëîâà: õðîìàòèí, ìîäèôèêàöèè ãèñòîíîâ, íóêëåîñî-

ìà, òðàíñêðèïöèÿ.

REFERENCES

1. Talbert PB, Ahmad K, Almouzni G, et al. A unified phylogeny-

based nomenclature for histone variants. Epigenetics Chromatin.

2012;5:7.

2. Simpson RT, Stafford DW. Structural features of a phased nucleo-

some core particle. Proc Natl Acad Sci U S A. 1983;80(1):51–5.

3. Allfrey VG, Mirsky AE. Structural modifications of histones and

their possible role in the regulation of RNA synthesis. Science.

1964;144(3618):559.

4. Luger K, Richmond TJ. DNA binding within the nucleosome co-

re. Curr Opin Struct Biol. 1998;8(1):33–40.

5. Andrews AJ, Luger K. Nucleosome structure(s) and stability: va-

riations on a theme. Annu Rev Biophys. 2011;40:99–117.

6. Kornberg RD. Chromatin structure: a repeating unit of histones

and DNA. Science. 1974;184(4139):868–71.

7. Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ. Sol-

vent mediated interactions in the structure of the nucleosome core

particle at 1.9 a resolution. J Mol Biol. 2002;319(5):1097–113.

8. van Holde KE. Chromatin. New York, Springer, 1989; 497 p.

9. Bednar J, Horowitz RA, Grigoryev SA, et al. Nucleosomes, linker

DNA, and linker histone form a unique structural motif that di-

rects the higher-order folding and compaction of chromatin.

Proc Natl Acad Sci U S A. 1998;95(24):14173–8.

10. Woodcock CL. Chromatin architecture. Curr Opin Struct Biol.

2006;16(2):213–20.

11. Talbert PB, Henikoff S. Chromatin: packaging without nucleoso-

mes. Curr Biol. 2012;22(24):R1040–3.

12. Balhorn R. The protamine family of sperm nuclear proteins. Ge-

nome Biol. 2007;8(9):227.

13. Suganuma T, Workman JL. Signals and combinatorial functions

of histone modifications. Annu Rev Biochem. 2011;80:473–99.

14. Rothbart SB, Strahl BD. Interpreting the language of histone

and DNA modifications. Biochim Biophys Acta. 2014;1839

(8):627–43.

15. Sidoli S, Cheng L, Jensen ON. Proteomics in chromatin biology

and epigenetics: Elucidation of post-translational modifications

of histone proteins by mass spectrometry. J Proteomics. 2012;75

(12):3419–33.

16. Zhang S, Roche K, Nasheuer HP, Lowndes NF. Modification of

histones by sugar �-N-acetylglucosamine (GlcNAc) occurs on

multiple residues, including histone H3 serine 10, and is cell cyc-

le-regulated. J Biol Chem. 2011;286(43):37483–95.

17. Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and

histone lysine crotonylation as a new type of histone modifica-

tion. Cell. 2011;146(6):1016–28.

18. Endoh M, Endo TA, Endoh T, et al. Histone H2A mono-ubiqui-

tination is a crucial step to mediate PRC1-dependent repression

of developmental genes to maintain ES cell identity. PLoS Ge-

net. 2012;8(7):e1002774.

19. Steger DJ, Lefterova MI, Ying L, et al. DOT1L/KMT4 recruit-

ment and H3K79 methylation are ubiquitously coupled with gene

transcription in mammalian cells. Mol Cell Biol. 2008;28(8):

2825–39.

20. Brown DT, Alexander BT, Sittman DB. Differential effect of H1

variant overexpression on cell cycle progression and gene ex-

pression. Nucleic Acids Res. 1996;24(3):486–93.

21. Jin C, Zang C, Wei G, et al. H3.3/H2A.Z double variant-contai-

ning nucleosomes mark «nucleosome-free regions» of active

promoters and other regulatory regions. Nat Genet. 2009;41(8):

941–5.

22. Ioudinkova ES, Barat A, Pichugin A, et al. Distinct distribution of

ectopically expressed histone variants H2A.Bbd and MacroH2A

in open and closed chromatin domains. PLoS One. 2012;7(10):

e47157.

23. Tolstorukov MY, Goldman JA, Gilbert C, Ogryzko V, Kingston

RE, Park PJ. Histone variant H2A. Bbd is associated with active

transcription and mRNA processing in human cells. Mol Cell.

2012;47(4):596–607.

24. Talbert PB, Henikoff S. Histone variants – ancient wrap artists of

the epigenome. Nat Rev Mol Cell Biol. 2010;11(4):264–75.

25. Finch JT, Klug A. Solenoidal model for superstructure in chro-

matin. Proc Natl Acad Sci U S A. 1976;73(6):1897–901.

26. Li G, Reinberg D. Chromatin higher-order structures and gene

regulation. Curr Opin Genet Dev. 2011;21(2):175–86.

27. Woodcock CL, Frado LL, Rattner JB. The higher-order structure

of chromatin: evidence for a helical ribbon arrangement. J Cell

Biol. 1984;99(1 Pt 1):42–52.

28. Dorigo B, Schalch T, Kulangara A, Duda S, Schroeder RR, Rich-

mond TJ. Nucleosome arrays reveal the two-start organization

of the chromatin fiber. Science. 2004;306(5701):1571–3.

29. Schalch T, Duda S, Sargent DF, Richmond TJ. X-ray structure

of a tetranucleosome and its implications for the chromatin fibre.

Nature. 2005;436(7047):138–41.

30. van Holde K, Zlatanova J. Chromatin fiber structure: Where is

the problem now? Semin Cell Dev Biol. 2007;18(5):651–8.

31. Eltsov M, Maclellan KM, Maeshima K, Frangakis AS, Dubochet

J. Analysis of cryo-electron microscopy images does not support

the existence of 30-nm chromatin fibers in mitotic chromosomes

in situ. Proc Natl Acad Sci U S A. 2008;105(50):19732–7.

32. Maeshima K, Hihara S, Takata H. New insight into the mitotic

chromosome structure: irregular folding of nucleosome fibers

without 30-nm chromatin structure. Cold Spring Harb Symp

Quant Biol. 2010;75:439–44.

33. Joti Y, Hikima T, Nishino Y, et al. Chromosomes without a 30-

nm chromatin fiber. Nucleus. 2012;3(5):404–10.

34. Razin SV, Gavrilov AA. Chromatin without the 30-nm fiber: con-

strained disorder instead of hierarchical folding. Epigenetics.

2014;9(5):653–7.

35. Maeshima K, Imai R, Tamura S, Nozaki T. Chromatin as dynamic

10-nm fibers. Chromosoma. 2014;123(3):225–37.

36. Rando OJ, Ahmad K. Rules and regulation in the primary struc-

ture of chromatin. Curr Opin Cell Biol. 2007;19(3):250–6.

37. Campos EI, Reinberg D. Histones: annotating chromatin. Annu

Rev Genet. 2009;43:559–99.

38. Wang J, Zhuang J, Iyer S, et al. Sequence features and chroma-

tin structure around the genomic regions bound by 119 human

transcription factors. Genome Res. 2012;22(9):1798–812.

39. Thurman RE, Rynes E, Humbert R, et al. The accessible chroma-

tin landscape of the human genome. Nature. 2012;489(7414):

75–82.

40. Elgin SC. DNAase I-hypersensitive sites of chromatin. Cell.

1981;27(3 Pt 2):413–5.

41. Gross DS, Garrard WT. Nuclease hypersensitive sites in chro-

matin. Annu Rev Biochem. 1988;57:159–97.

42. Felsenfeld G, Boyes J, Chung J, Clark D, Studitsky V. Chroma-

tin structure and gene expression. Proc Natl Acad Sci U S A.

1996;93(18):9384–8.

421

NUCLEOSOMES AND TRANSCRIPTIONAL REGULATION



43. Boyle AP, Song L, Lee BK, et al. High-resolution genome-wide in

vivo footprinting of diverse transcription factors in human cells.

Genome Res. 2011;21(3):456–64.

44. John S, Sabo PJ, Thurman RE, et al. Chromatin accessibility pre-

determines glucocorticoid receptor binding patterns. Nat Genet.

2011;43(3):264–8.

45. Kaplan T, Li XY, Sabo PJ, et al. Quantitative models of the me-

chanisms that control genome-wide patterns of transcription fac-

tor binding during early Drosophila development. PLoS Genet.

2011;7(2):e1001290.

46. Li XY, Thomas S, Sabo PJ, Eisen MB, Stamatoyannopoulos JA,

Biggin MD. The role of chromatin accessibility in directing the

widespread, overlapping patterns of Drosophila transcription

factor binding. Genome Biol. 2011;12(4):R34.

47. Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, Gilad Y, Prit-

chard JK. Accurate inference of transcription factor binding

from DNA sequence and chromatin accessibility data. Genome

Res. 2011;21(3):447–55.

48. Struhl K. Fundamentally different logic of gene regulation in eu-

karyotes and prokaryotes. Cell. 1999;98(1):1–4.

49. Schnitzler GR. Control of nucleosome positions by DNA sequen-

ce and remodeling machines. Cell Biochem Biophys. 2008;51

(2–3):67–80.

50. Cairns BR. The logic of chromatin architecture and remodelling

at promoters. Nature. 2009;461(7261):193–8.

51. Mavrich TN, Ioshikhes IP, Venters BJ, et al. A barrier nucleoso-

me model for statistical positioning of nucleosomes throughout

the yeast genome. Genome Res. 2008;18(7):1073–83.

52. Maier VK, Chioda M, Becker PB. ATP-dependent chromatoso-

me remodeling. Biol Chem. 2008;389(4):345–52.

53. Clapier CR, Cairns BR. The biology of chromatin remodeling

complexes. Annu Rev Biochem. 2009;78:273–304.

54. Kaplan N, Moore IK, Fondufe-Mittendorf Y, et al. The DNA-en-

coded nucleosome organization of a eukaryotic genome. Nature.

2009;458(7236):362–6.

55. Segal E, Widom J. Poly(dA:dT) tracts: major determinants of

nucleosome organization. Curr Opin Struct Biol. 2009;19(1):

65–71.

56. Lee W, Tillo D, Bray N, et al. A high-resolution atlas of nucleoso-

me occupancy in yeast. Nat Genet. 2007;39(10):1235–44.

57. Struhl K. Naturally occurring poly(dA-dT) sequences are up-

stream promoter elements for constitutive transcription in yeast.

Proc Natl Acad Sci U S A. 1985;82(24):8419–23.

58. Badis G, Chan ET, van Bakel H, et al. A library of yeast trans-

cription factor motifs reveals a widespread function for Rsc3 in

targeting nucleosome exclusion at promoters. Mol Cell. 2008;32

(6):878–87.

59. Burd CJ, Archer TK. Chromatin architecture defines the gluco-

corticoid response. Mol Cell Endocrinol. 2013;380(1–2):25–31.

60. Hartley PD, Madhani HD. Mechanisms that specify promoter

nucleosome location and identity. Cell. 2009;137(3):445–58.

61. Sherwood RI, Hashimoto T, O'Donnell CW, et al. Discovery of

directional and nondirectional pioneer transcription factors by

modeling DNase profile magnitude and shape. Nat Biotechnol.

2014;32(2):171–8.

62. Fascher KD, Schmitz J, Horz W. Role of trans-activating pro-

teins in the generation of active chromatin at the PHO5 promoter

in S. cerevisiae. EMBO J. 1990;9(8):2523–8.

63. Yudkovsky N, Logie C, Hahn S, Peterson CL. Recruitment of the

SWI/SNF chromatin remodeling complex by transcriptional ac-

tivators. Genes Dev. 1999;13(18):2369–74.

64. Zaret KS, Carroll JS. Pioneer transcription factors: establishing

competence for gene expression. Genes Dev. 2011;25(21):

2227–41.

65. Ho JW, Jung YL, Liu T, et al. Comparative analysis of metazoan

chromatin organization. Nature. 2014;512(7515):449–52.

66. Shen Y, Yue F, McCleary DF, et al. A map of the cis-regulatory se-

quences in the mouse genome. Nature. 2012;488(7409):116–20.

67. Gerstein MB, Lu ZJ, Van Nostrand EL, et al. Integrative analysis

of the Caenorhabditis elegans genome by the modENCODE

project. Science. 2010;330(6012):1775–87.

68. modENCODE Consortium, Roy S, Ernst J, et al. Identification

of functional elements and regulatory circuits by Drosophila

modENCODE. Science. 2010;330(6012):1787–97.

69. Kasten M, Szerlong H, Erdjument-Bromage H, Tempst P, Wer-

ner M, Cairns BR. Tandem bromodomains in the chromatin re-

modeler RSC recognize acetylated histone H3 Lys14. EMBO J.

2004;23(6):1348–59.

70. VanDemark AP, Kasten MM, Ferris E, Heroux A, Hill CP, Cairns

BR. Autoregulation of the rsc4 tandem bromodomain by gcn5

acetylation. Mol Cell. 2007;27(5):817–28.

71. Chatterjee N, Sinha D, Lemma-Dechassa M, Tan S, Shogren-

Knaak MA, Bartholomew B. Histone H3 tail acetylation modula-

tes ATP-dependent remodeling through multiple mechanisms.

Nucleic Acids Res. 2011;39(19):8378–91.

72. Ferreira H, Flaus A, Owen-Hughes T. Histone modifications in-

fluence the action of Snf2 family remodelling enzymes by diffe-

rent mechanisms. J Mol Biol. 2007;374(3):563–79.

73. Sterner DE, Berger SL. Acetylation of histones and transcrip-

tion-related factors. Microbiol Mol Biol Rev. 2000;64(2):

435–59.

74. Strahl BD, Allis CD. The language of covalent histone modifi-

cations. Nature. 2000;403(6765):41–5.

75. Koutelou E, Hirsch CL, Dent SY. Multiple faces of the SAGA

complex. Curr Opin Cell Biol. 2010;22(3):374–82.

76. Albert I, Mavrich TN, Tomsho LP, et al. Translational and rota-

tional settings of H2A.Z nucleosomes across the Saccharomy-

ces cerevisiae genome. Nature. 2007;446(7135):572–6.

77. Jin C, Felsenfeld G. Nucleosome stability mediated by histone

variants H3.3 and H2A.Z. Genes Dev. 2007;21(12):1519–29.

78. Henikoff S. Nucleosome destabilization in the epigenetic regula-

tion of gene expression. Nat Rev Genet. 2008;9(1):15–26.

79. Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C. ATP-dri-

ven exchange of histone H2AZ variant catalyzed by SWR1 chro-

matin remodeling complex. Science. 2004;303(5656):343–8.

80. Ruhl DD, Jin J, Cai Y, et al. Purification of a human SRCAP

complex that remodels chromatin by incorporating the histone

variant H2A.Z into nucleosomes. Biochemistry. 2006;45(17):

5671–7.

81. Ranjan A, Mizuguchi G, FitzGerald PC, et al. Nucleosome-free

region dominates histone acetylation in targeting SWR1 to pro-

moters for H2A.Z replacement. Cell. 2013;154(6):1232–45.

82. Vermeulen M, Timmers HT. Grasping trimethylation of histone

H3 at lysine 4. Epigenomics. 2010;2(3):395–406.

83. Ng HH, Robert F, Young RA, Struhl K. Targeted recruitment of

Set1 histone methylase by elongating Pol II provides a localized

mark and memory of recent transcriptional activity. Mol Cell.

2003;11(3):709–19.

84. Shilatifard A. The COMPASS family of histone H3K4 methy-

lases: mechanisms of regulation in development and disease pa-

thogenesis. Annu Rev Biochem. 2012;81:65–95.

85. Jeronimo C, Bataille AR, Robert F. The writers, readers, and

functions of the RNA polymerase II C-terminal domain code.

Chem Rev. 2013;113(11):8491–522.

86. Lee JH, Skalnik DG. CpG-binding protein (CXXC finger pro-

tein 1) is a component of the mammalian Set1 histone H3-Lys4

methyltransferase complex, the analogue of the yeast Set1/

COMPASS complex. J Biol Chem. 2005;280(50):41725–31.

422

GOLOV A. K. ET AL.



87. Thomson JP, Skene PJ, Selfridge J, et al. CpG islands influence

chromatin structure via the CpG-binding protein Cfp1. Nature.

2010;464(7291):1082–6.

88. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ. How

chromatin-binding modules interpret histone modifications: les-

sons from professional pocket pickers. Nat Struct Mol Biol.

2007;14(11):1025–40.

89. Wysocka J, Swigut T, Xiao H, et al. A PHD finger of NURF coup-

les histone H3 lysine 4 trimethylation with chromatin remodel-

ling. Nature. 2006;442(7098):86–90.

90. Lee KK, Workman JL. Histone acetyltransferase complexes: one

size doesn't fit all. Nat Rev Mol Cell Biol. 2007;8(4):284–95.

91. ENCODE Project Consortium. An integrated encyclopedia of

DNA elements in the human genome. Nature. 2012;489(7414):

57–74.

92. Maston GA, Evans SK, Green MR. Transcriptional regulatory

elements in the human genome. Annu Rev Genomics Hum Genet.

2006;7:29–59.

93. Visel A, Rubin EM, Pennacchio LA. Genomic views of distant-

acting enhancers. Nature. 2009;461(7261):199–205.

94. Vavouri T, McEwen GK, Woolfe A, Gilks WR, Elgar G. Defining

a genomic radius for long-range enhancer action: duplicated con-

served non-coding elements hold the key. Trends Genet. 2006;

22(1):5–10.

95. Lettice LA, Heaney SJ, Purdie LA, et al. A long-range Shh enhan-

cer regulates expression in the developing limb and fin and is as-

sociated with preaxial polydactyly. Hum Mol Genet. 2003;12

(14):1725–35.

96. Sanyal A, Lajoie BR, Jain G, Dekker J. The long-range interac-

tion landscape of gene promoters. Nature. 2012;489(7414):

109–13.

97. Kikuta H, Laplante M, Navratilova P, et al. Genomic regulatory

blocks encompass multiple neighboring genes and maintain con-

served synteny in vertebrates. Genome Res. 2007;17(5):545–55.

98. Birnbaum RY, Clowney EJ, Agamy O, et al. Coding exons func-

tion as tissue-specific enhancers of nearby genes. Genome Res.

2012;22(6):1059–68.

99. Heintzman ND, Hon GC, Hawkins RD, et al. Histone modifica-

tions at human enhancers reflect global cell-type-specific gene

expression. Nature. 2009;459(7243):108–12.

100. Heinz S, Benner C, Spann N, et al. Simple combinations of linea-

ge-determining transcription factors prime cis-regulatory ele-

ments required for macrophage and B cell identities. Mol Cell.

2010;38(4):576–89.

101. Calo E, Wysocka J. Modification of enhancer chromatin: what,

how, and why? Mol Cell. 2013;49(5):825–37.

102. Svotelis A, Gevry N, Gaudreau L. Regulation of gene expression

and cellular proliferation by histone H2A.Z. Biochem Cell Biol.

2009;87(1):179–88.

103. Creyghton MP, Cheng AW, Welstead GG, et al. Histone H3K27ac

separates active from poised enhancers and predicts develop-

mental state. Proc Natl Acad Sci U S A. 2010;107(50):21931–6.

104. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA,

Wysocka J. A unique chromatin signature uncovers early develop-

mental enhancers in humans. Nature. 2011;470(7333):279–83.

105. Heintzman ND, Stuart RK, Hon G, et al. Distinct and predictive

chromatin signatures of transcriptional promoters and enhancers

in the human genome. Nat Genet. 2007;39(3):311–8.

106. Phillips-Cremins JE, Corces VG. Chromatin insulators: linking

genome organization to cellular function. Mol Cell. 2013;50(4):

461–74.

107. Schoborg T, Labrador M. Expanding the roles of chromatin in-

sulators in nuclear architecture, chromatin organization and ge-

nome function. Cell Mol Life Sci. 2014;71(21):4089–113.

108. Ulianov SV, Markova EN, Gavrilov AA, Razin SV. Insulators in

vertebrates: regulatory mechanisms and chromatin structure.

Biopolym Cell. 2012; 28(4):252–60.

109. Kirkland JG, Raab JR, Kamakaka RT. TFIIIC bound DNA ele-

ments in nuclear organization and insulation. Biochim Biophys

Acta. 2013;1829(3–4):418–24.

110. Van Bortle K, Corces VG. tDNA insulators and the emerging role of

TFIIIC in genome organization. Transcription. 2012;3(6):277–84.

111. Ong CT, Corces VG. CTCF: an architectural protein bridging ge-

nome topology and function. Nat Rev Genet. 2014;15(4):234–46.

112. Holwerda SJ, de Laat W. CTCF: the protein, the binding part-

ners, the binding sites and their chromatin loops. Philos Trans R

Soc Lond B Biol Sci. 2013;368(1620):20120369.

113. Kyrchanova O, Georgiev P. Chromatin insulators and long-dis-

tance interactions in Drosophila. FEBS Lett. 2014;588(1):8–14.

114. Gurudatta BV, Corces VG. Chromatin insulators: lessons from

the fly. Brief Funct Genomic Proteomic. 2009;8(4):276–82.

115. Ernst J, Kellis M. Discovery and characterization of chromatin

states for systematic annotation of the human genome. Nat Bio-

technol. 2010;28(8):817–25.

116. Wendt KS, Yoshida K, Itoh T, et al. Cohesin mediates transcrip-

tional insulation by CCCTC-binding factor. Nature. 2008;451

(7180):796–801.

117. Hon G, Wang W, Ren B. Discovery and annotation of functional

chromatin signatures in the human genome. PLoS Comput Biol.

2009;5(11):e1000566.

118. Raab JR, Kamakaka RT. Insulators and promoters: closer than

we think. Nat Rev Genet. 2010;11(6):439–46.

119. De Santa F, Barozzi I, Mietton F, et al. A large fraction of extra-

genic RNA pol II transcription sites overlap enhancers. PLoS

Biol. 2010;8(5):e1000384.

120. Koch F, Fenouil R, Gut M, et al. Transcription initiation plat-

forms and GTF recruitment at tissue-specific enhancers and pro-

moters. Nat Struct Mol Biol. 2011;18(8):956–63.

121. Pekowska A, Benoukraf T, Zacarias-Cabeza J, et al. H3K4 tri-

methylation provides an epigenetic signature of active enhan-

cers. EMBO J. 2011;30(20):4198–210.

122. Koch F, Andrau JC. Initiating RNA polymerase II and TIPs as

hallmarks of enhancer activity and tissue-specificity. Transcrip-

tion. 2011;2(6):263–8.

123. Natoli G, Andrau JC. Noncoding transcription at enhancers: ge-

neral principles and functional models. Annu Rev Genet. 2012;

46:1–19.

124. Kireeva ML, Walter W, Tchernajenko V, Bondarenko V, Kash-

lev M, Studitsky VM. Nucleosome remodeling induced by RNA

polymerase II: loss of the H2A/H2B dimer during transcription.

Mol Cell. 2002;9(3):541–52.

125. Izban MG, Luse DS. Transcription on nucleosomal templates by

RNA polymerase II in vitro: inhibition of elongation with en-

hancement of sequence-specific pausing. Genes Dev. 1991;5

(4):683–96.

126. Singh J, Padgett RA. Rates of in situ transcription and splicing in

large human genes. Nat Struct Mol Biol. 2009;16(11):1128–33.

127. Selth LA, Sigurdsson S, Svejstrup JQ. Transcript elongation by

RNA polymerase II. Annu Rev Biochem. 2010;79:271–93.

128. Smolle M, Workman JL. Transcription-associated histone modi-

fications and cryptic transcription. Biochim Biophys Acta. 2013;

1829(1):84–97.

129. Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Stu-

ditsky VM, Reinberg D. FACT facilitates transcription-depen-

dent nucleosome alteration. Science. 2003;301(5636):1090–3.

130. Thiriet C, Hayes JJ. Replication-independent core histone dyna-

mics at transcriptionally active loci in vivo. Genes Dev. 2005;

19(6):677–82.

423

NUCLEOSOMES AND TRANSCRIPTIONAL REGULATION



131. Jamai A, Imoberdorf RM, Strubin M. Continuous histone H2B

and transcription-dependent histone H3 exchange in yeast cells

outside of replication. Mol Cell. 2007;25(3):345–55.

132. Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, Rando

OJ. Dynamics of replication-independent histone turnover in

budding yeast. Science. 2007;315(5817):1405–8.

133. Rufiange A, Jacques PE, Bhat W, Robert F, Nourani A. Geno-

me-wide replication-independent histone H3 exchange occurs

predominantly at promoters and implicates H3 K56 acetylation

and Asf1. Mol Cell. 2007;27(3):393–405.

134. Adkins MW, Tyler JK. The histone chaperone Asf1p mediates

global chromatin disassembly in vivo. J Biol Chem. 2004;279

(50):52069–74.

135. Schwabish MA, Struhl K. Asf1 mediates histone eviction and de-

position during elongation by RNA polymerase II. Mol Cell.

2006;22(3):415–22.

136. Walfridsson J, Khorosjutina O, Matikainen P, Gustafsson CM,

Ekwall K. A genome-wide role for CHD remodelling factors and

Nap1 in nucleosome disassembly. EMBO J. 2007;26(12):

2868–79.

137. Robinson KM, Schultz MC. Replication-independent assembly

of nucleosome arrays in a novel yeast chromatin reconstitution

system involves antisilencing factor Asf1p and chromodomain

protein Chd1p. Mol Cell Biol. 2003;23(22):7937–46.

138. Zlatanova J, Seebart C, Tomschik M. Nap1: taking a closer look

at a juggler protein of extraordinary skills. FASEB J. 2007;21

(7):1294–310.

139. Kuryan BG, Kim J, Tran NN, et al. Histone density is maintai-

ned during transcription mediated by the chromatin remodeler

RSC and histone chaperone NAP1 in vitro. Proc Natl Acad Sci

U S A. 2012;109(6):1931–6.

140. Wittschieben BO, Otero G, de Bizemont T, et al. A novel histone

acetyltransferase is an integral subunit of elongating RNA poly-

merase II holoenzyme. Mol Cell. 1999;4(1):123–8.

141. Cho H, Orphanides G, Sun X, et al. A human RNA polymerase

II complex containing factors that modify chromatin structure.

Mol Cell Biol. 1998;18(9):5355–63.

142. Govind CK, Zhang F, Qiu H, Hofmeyer K, Hinnebusch AG. Gcn5

promotes acetylation, eviction, and methylation of nucleosomes

in transcribed coding regions. Mol Cell. 2007;25(1):31–42.

143. Ginsburg DS, Govind CK, Hinnebusch AG. NuA4 lysine acetyl-

transferase Esa1 is targeted to coding regions and stimulates

transcription elongation with Gcn5. Mol Cell Biol. 2009;29(24):

6473–87.

144. Kaplan CD, Laprade L, Winston F. Transcription elongation fac-

tors repress transcription initiation from cryptic sites. Science.

2003;301(5636):1096–9.

145. Cheung V, Chua G, Batada NN, et al. Chromatin- and transcrip-

tion-related factors repress transcription from within coding re-

gions throughout the Saccharomyces cerevisiae genome. PLoS

Biol. 2008;6(11):e277.

146. Li B, Gogol M, Carey M, Lee D, Seidel C, Workman JL. Combi-

ned action of PHD and chromo domains directs the Rpd3S HDAC

to transcribed chromatin. Science. 2007;316(5827):1050–4.

147. Silva AC, Xu X, Kim HS, et al. The replication-independent

histone H3-H4 chaperones HIR, ASF1, and RTT106 cooperate

to maintain promoter fidelity. J Biol Chem. 2012;287(3):

1709–18.

148. Gkikopoulos T, Schofield P, Singh V, et al. A role for Snf2-rela-

ted nucleosome-spacing enzymes in genome-wide nucleosome

organization. Science. 2011;333(6050):1758–60.

149. Hennig BP, Bendrin K, Zhou Y, Fischer T. Chd1 chromatin re-

modelers maintain nucleosome organization and repress cryptic

transcription. EMBO Rep. 2012;13(11):997–1003.

150. Pointner J, Persson J, Prasad P, et al. CHD1 remodelers regula-

te nucleosome spacing in vitro and align nucleosomal arrays

over gene coding regions in S. pombe. EMBO J. 2012;31(23):

4388–403.

151. Shim YS, Choi Y, Kang K, et al. Hrp3 controls nucleosome posi-

tioning to suppress non-coding transcription in eu- and hetero-

chromatin. EMBO J. 2012;31(23):4375–87.

152. Govind CK, Qiu H, Ginsburg DS, et al. Phosphorylated Pol II

CTD recruits multiple HDACs, including Rpd3C(S), for methy-

lation-dependent deacetylation of ORF nucleosomes. Mol Cell.

2010;39(2):234–46.

153. Drouin S, Laramee L, Jacques PE, Forest A, Bergeron M, Ro-

bert F. DSIF and RNA polymerase II CTD phosphorylation co-

ordinate the recruitment of Rpd3S to actively transcribed genes.

PLoS Genet. 2010;6(10):e1001173.

154. Krogan NJ, Kim M, Tong A, et al. Methylation of histone H3 by

Set2 in Saccharomyces cerevisiae is linked to transcriptional

elongation by RNA polymerase II. Mol Cell Biol. 2003;23(12):

4207–18.

155. Li B, Howe L, Anderson S, Yates JR 3rd, Workman JL. The Set2

histone methyltransferase functions through the phosphorylated

carboxyl-terminal domain of RNA polymerase II. J Biol Chem.

2003;278(11):8897–903.

156. Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Ro-

binson C, Kouzarides T. Spatial distribution of di- and tri-me-

thyl lysine 36 of histone H3 at active genes. J Biol Chem. 2005;

280(18):17732–6.

157. Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chro-

matin state in pluripotent and lineage-committed cells. Nature.

2007;448(7153):553–60.

158. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson

CL. Histone H4-K16 acetylation controls chromatin structure

and protein interactions. Science. 2006;311(5762):844–7.

159. Robinson PJ, An W, Routh A, et al. 30 nm chromatin fibre de-

compaction requires both H4-K16 acetylation and linker histone

eviction. J Mol Biol. 2008;381(4):816–25.

160. Allahverdi A, Yang R, Korolev N, et al. The effects of histone H4

tail acetylations on cation-induced chromatin folding and self-as-

sociation. Nucleic Acids Res. 2011;39(5):1680–91.

161. Pepenella S, Murphy KJ, Hayes JJ. Intra- and inter-nucleosome

interactions of the core histone tail domains in higher-order chro-

matin structure. Chromosoma. 2014;123(1–2):3–13.

162. Zhou J, Fan JY, Rangasamy D, Tremethick DJ. The nucleosome

surface regulates chromatin compaction and couples it with trans-

criptional repression. Nat Struct Mol Biol. 2007;14(11):1070–6.

163. Greaves IK, Rangasamy D, Ridgway P, Tremethick DJ. H2A.Z

contributes to the unique 3D structure of the centromere. Proc

Natl Acad Sci U S A. 2007;104(2):525–30.

164. Fan JY, Rangasamy D, Luger K, Tremethick DJ. H2A.Z alters

the nucleosome surface to promote HP1alpha-mediated chroma-

tin fiber folding. Mol Cell. 2004;16(4):655–61.

165. Heitz E. Der Nachweis der Chromosomen. Z Bot. 1928;18:

625–81.

166. Zeng W, Ball AR Jr, Yokomori K. HP1: heterochromatin binding

proteins working the genome. Epigenetics. 2010;5(4):287–92.

167. Kueng S, Oppikofer M, Gasser SM. SIR proteins and the assemb-

ly of silent chromatin in budding yeast. Annu Rev Genet. 2013;

47:275–306.

168. Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methy-

lation of histone H3 lysine 9 creates a binding site for HP1 pro-

teins. Nature. 2001;410(6824):116–20.

169. Canzio D, Chang EY, Shankar S, et al. Chromodomain-mediated

oligomerization of HP1 suggests a nucleosome-bridging mecha-

nism for heterochromatin assembly. Mol Cell. 20117;41(1):67–81.

424

GOLOV A. K. ET AL.



170. Fritsch L, Robin P, Mathieu JR, et al. A subset of the histone H3

lysine 9 methyltransferases Suv39h1, G9a, GLP, and SETDB1

participate in a multimeric complex. Mol Cell. 2010;37(1):46–56.

171. Schotta G, Ebert A, Krauss V, et al. Central role of Drosophila

SU(VAR)3-9 in histone H3-K9 methylation and heterochro-

matic gene silencing. EMBO J. 2002;21(5):1121–31.

172. Groner AC, Meylan S, Ciuffi A, et al. KRAB-zinc finger pro-

teins and KAP1 can mediate long-range transcriptional repres-

sion through heterochromatin spreading. PLoS Genet. 2010;6(3):

e1000869.

173. Mateos-Langerak J, Brink MC, Luijsterburg MS, van der Kraan

I, van Driel R, Verschure PJ. Pericentromeric heterochromatin

domains are maintained without accumulation of HP1. Mol Biol

Cell. 2007;18(4):1464–71.

174. Velichko AK, Kantidze OL, Razin SV. HP1� is not necessary for

the structural maintenance of centromeric heterochromatin. Epi-

genetics. 2011;6(3):380–7.

175. Peters AH, Kubicek S, Mechtler K, et al. Partitioning and plas-

ticity of repressive histone methylation states in mammalian

chromatin. Mol Cell. 2003;12(6):1577–89.

176. Hawkins RD, Hon GC, Lee LK, et al. Distinct epigenomic land-

scapes of pluripotent and lineage-committed human cells. Cell

Stem Cell. 2010;6(5):479–91.

177. Wen B, Wu H, Shinkai Y, Irizarry RA, Feinberg AP. Large histone

H3 lysine 9 dimethylated chromatin blocks distinguish differen-

tiated from embryonic stem cells. Nat Genet. 2009;41(2): 246–50.

178. Margueron R, Reinberg D. The Polycomb complex PRC2 and its

mark in life. Nature. 2011;469(7330):343–9.

179. Butenko Y, Ohad N. Polycomb-group mediated epigenetic me-

chanisms through plant evolution. Biochim Biophys Acta. 2011;

1809(8):395–406.

180. Di Croce L, Helin K. Transcriptional regulation by Polycomb

group proteins. Nat Struct Mol Biol. 2013;20(10):1147–55.

181. Schwartz YB, Kahn TG, Nix DA, et al. Genome-wide analysis of

Polycomb targets in Drosophila melanogaster. Nat Genet.

2006;38(6):700–5.

182. Tolhuis B, de Wit E, Muijrers I, et al. Genome-wide profiling of

PRC1 and PRC2 Polycomb chromatin binding in Drosophila

melanogaster. Nat Genet. 2006;38(6):694–9.

183. Negre N, Hennetin J, Sun LV, et al. Chromosomal distribution of

PcG proteins during Drosophila development. PLoS Biol. 2006;

4(6):e170.

184. Ku M, Koche RP, Rheinbay E et al. Genomewide analysis of PRC1

and PRC2 occupancy identifies two classes of bivalent domains.

PLoS Genet. 2008;4(10):e1000242.

185. Lynch MD, Smith AJ, De Gobbi M, et al. An interspecies ana-

lysis reveals a key role for unmethylated CpG dinucleotides in

vertebrate Polycomb complex recruitment. EMBO J. 2012;31

(2):317–29.

186. Cui K, Zang C, Roh TY, et al. Chromatin signatures in multipo-

tent human hematopoietic stem cells indicate the fate of bivalent

genes during differentiation. Cell Stem Cell. 2009;4(1):80–93.

187. Kohler C, Villar CB. Programming of gene expression by Po-

lycomb group proteins. Trends Cell Biol. 2008;18(5):236–43.

188. Francis NJ, Kingston RE, Woodcock CL. Chromatin compac-

tion by a polycomb group protein complex. Science. 2004;306

(5701):1574–7.

189. Simon JA, Kingston RE. Mechanisms of polycomb gene silen-

cing: knowns and unknowns. Nat Rev Mol Cell Biol. 2009;10

(10):697–708.

190. Bantignies F, Cavalli G. Polycomb group proteins: repression

in 3D. Trends Genet. 2011;27(11):454–64.

191. Chen L, Widom J. Mechanism of transcriptional silencing in

yeast. Cell. 2005;120(1):37–48.

192. Sha K, Gu SG, Pantalena-Filho LC, et al. Distributed probing of

chromatin structure in vivo reveals pervasive chromatin accessi-

bility for expressed and non-expressed genes during tissue dif-

ferentiation in C. elegans. BMC Genomics. 2010;11:465.

193. Filion GJ, van Bemmel JG, Braunschweig U, et al. Systematic

protein location mapping reveals five principal chromatin types

in Drosophila cells. Cell. 2010;143(2):212–24.

194. Verschure PJ, van der Kraan I, Manders EM, Hoogstraten D,

Houtsmuller AB, van Driel R. Condensed chromatin domains in

the mammalian nucleus are accessible to large macromolecules.

EMBO Rep. 2003;4(9):861–6.

195. Gorisch SM, Lichter P, Rippe K. Mobility of multi-subunit com-

plexes in the nucleus: accessibility and dynamics of chromatin

subcompartments. Histochem Cell Biol. 2005;123(3):217–28.

196. Pack C, Saito K, Tamura M, Kinjo M. Microenvironment and

effect of energy depletion in the nucleus analyzed by mobility of

multiple oligomeric EGFPs. Biophys J. 2006;91(10):3921–36.

197. Hihara S, Pack CG, Kaizu K, et al. Local nucleosome dynamics

facilitate chromatin accessibility in living mammalian cells.

Cell Rep. 2012;2(6):1645–56.

198. Piacentini L, Fanti L, Negri R, et al. Heterochromatin protein 1

(HP1a) positively regulates euchromatic gene expression through

RNA transcript association and interaction with hnRNPs in Dro-

sophila. PLoS Genet. 2009;5(10):e1000670.

199. Riddle NC, Minoda A, Kharchenko PV, et al. Plasticity in pat-

terns of histone modifications and chromosomal proteins in Dro-

sophila heterochromatin. Genome Res. 2011;21(2):147–63.

200. Brookes E, de Santiago I, Hebenstreit D, et al. Polycomb asso-

ciates genome-wide with a specific RNA polymerase II variant,

and regulates metabolic genes in ESCs. Cell Stem Cell. 2012;10

(2):157–70.

201. Kanhere A, Viiri K, Araujo CC, et al. Short RNAs are transcri-

bed from repressed polycomb target genes and interact with po-

lycomb repressive complex-2. Mol Cell. 2010;38(5):675–88.

202. Enderle D, Beisel C, Stadler MB, Gerstung M, Athri P, Paro R.

Polycomb preferentially targets stalled promoters of coding and

noncoding transcripts. Genome Res. 2011;21(2):216–26.

203. Buhler M, Gasser SM. Silent chromatin at the middle and ends:

lessons from yeasts. EMBO J. 2009;28(15):2149–61.

204. Towbin BD, Gonzalez-Sandoval A, Gasser SM. Mechanisms of

heterochromatin subnuclear localization. Trends Biochem Sci.

2013;38(7):356–63.

205. Stock JK, Giadrossi S, Casanova M, et al. Ring1-mediated ubi-

quitination of H2A restrains poised RNA polymerase II at biva-

lent genes in mouse ES cells. Nat Cell Biol. 2007;9(12):1428–35.

206. Taddei A, Van Houwe G, Nagai S, Erb I, van Nimwegen E, Gas-

ser SM. The functional importance of telomere clustering: glo-

bal changes in gene expression result from SIR factor disper-

sion. Genome Res. 2009;19(4):611–25.

207. Padeken J, Heun P. Nucleolus and nuclear periphery: velcro for

heterochromatin. Curr Opin Cell Biol. 2014;28:54–60.

208. Pinheiro I, Margueron R, Shukeir N, et al. Prdm3 and Prdm16

are H3K9me1 methyltransferases required for mammalian hete-

rochromatin integrity. Cell. 2012;150(5):948–60.

209. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromo-

some conformation. Science. 2002;295(5558):1306–11.

210. de Wit E, de Laat W. A decade of 3C technologies: insights into

nuclear organization. Genes Dev. 2012;26(1):11–24.

211. Gavrilov AA, Razin SV, Iarovaia OV. C-methods to study 3D or-

ganization of the eukaryotic genome. Biopolym Cell. 2012;

28(4):245–51.

Received 12.10.14

425

NUCLEOSOMES AND TRANSCRIPTIONAL REGULATION


