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This review discusses the characteristics of three-dimensional cell culture systems on and 
without carriers (scaffolds). Scaffolds are used to simulate the extracellular matrix, as well as 
to reproduce the natural physical and structural microenvironment of cells, similar to living 
tissue. The review examines the types of scaffolds (hard and gel-like, natural and artificial, 
degradable and non-degradable), their characteristics, advantages and disadvantages, features 
of cell distribution in them. The use of decellularized and devitalized organs and tissues as 
scaffolds is discussed. The review also considers matrix-free cultivation of cells in the com-
position of three-dimensional multicellular structures – spheroids. The structure and biology 
of spheroids is discussed. The features of spheroid formation under static (self-assembly) and 
dynamic (under the influence of external forces) cultivation conditions are considered. The 
role of spheroid size for cell survival is discussed.
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For many decades, mammalian cell cultures 
have been an invaluable tool in biology. The 
prevalent type of cell cultivation systems is a 
monolayer two-dimensional (2D) cell culture 
grown on rigid substrates (glass, polystyrene). 
However, they do not fully reproduce in vivo 
conditions. Cells in two-dimensional cultures 
are generally flatter and more elongated com-
pared to cells in vivo. Cell cultivation under 
2D conditions is also accompanied by selection 
of a specific cell phenotype adapted to growth 
on culture plastics or glass [1, 2], cell polarity 
displacement [3], lack of nutrients and oxygen 

metabolic gradients, decrease in number of 
intercellular and cell-matrix interactions.

Unlike 2D monolayer cultures, most of the 
cells in tissues and organs are in the three-
dimensional (3D) environment, which consists 
of cellular and non-cellular components that 
provide various biophysical, biochemical and 
mechanical signals and are involved in the 
regulation of somatic and stem cell functions 
in vivo [4, 5]. The non-cellular component, 
called the extracellular matrix (ECM), is a 
three-dimensional gel-like structure formed 
mainly by structural proteins (laminin, fibro-
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nectin and glycosaminoglycans). These pro-
teins perform both structural and communica-
tive functions, which ensure cellular interac-
tion and maintenance of tissue specificity and 
homeostasis [6]. ECM also regulates the syn-
thesis and release of soluble biomolecules and 
growth factors [6], provides the mechanical 
characteristics inherent in the cellular micro-
environment [7, 8], and participates in the 
spatiotemporal control of cell migration [7, 8].

Cell interaction , as well as their interaction 
with ECM, are carried out through cell adhe-
sion molecules located on the surface of the 
cell membrane and involved in numerous cel-
lular processes, including recognition, adhe-
sion, migration and cell differentiation. They 
are also responsible for transmitting informa-
tion from ECM to the cell [9, 10]. Depending 
on the structure and functions, cell adhesion 
molecules are divided into the immunoglobu-
lin, integrin, cadherin and selectin families 
[11]. Intercellular interactions are mainly reg-
ulated by the cadherin protein family [12]. The 
proteins of integrin family are responsible for 
the binding of cells to ECM.

Noteworthy, the cellular microenvironment 
is a dynamic system that changes during the 
cells growth and development under the influ-
ence of spatio-temporal factors.

Thus the absence of three-dimensional cel-
lular microenvironment results in the changes 
in morphology of cells [1, 2], their polarity [3], 
division mode, signaling pathways [13, 14], 
gene expression, biochemical processes [15, 
16] and loss of their phenotype [17, 18]. 
Thereby at present the development of 3D 
culture methods that are maximally similar to 
in vivo conditions is an urgent task for re-
searchers.

To fabricate the 3D microenvironment with 
physical, biological and mechanical character-
istics of different types of tissues and cells, 
researchers use a wide range of materials and 
technological approach, which have both ad-
vantages and disadvantages. However, today 
there is no general approach for creating three-
dimensional cell models.

All existing 3D cultivation systems can be 
divided into 2 large groups: cell cultures on 
carriers or matrices and cell cultures without 
carriers. 

3D Scaffold Cultivation Systems
Three-dimensional matrices (scaffolds) are 
used to mimic ECM, as well as to reproduce 
the natural physical and structural microenvi-
ronment of cells, similar to living tissue [19]. 
Wherein, ideal scaffolds should provide attach-
ment and migration of the cells, retain the 
biochemical factors, provide the oxygen and 
carbon dioxide diffusion as well as diffusion 
of nutrients and products expressed in cells, 
and exert specific mechanical and biological 
effects on cells. Scaffolds must also be char-
acterized by high porosity and have pore sizes, 
ensuring efficient colonization and migration 
of the cells throughout their structure. A pattern 
to strive for is a scaffold porosity of 90 % [20]. 
However, too high porosity can significantly 
impair the mechanical properties of the scaf-
fold. The optimal pore size for different cells 
varies significantly [21]. For example, pores 
of 200–400 μm are effective for bone tissue 
formation [22], and pores of 50–200 μm are 
suitable for the growth of smooth muscle cells 
[23]. As a rule, the pores larger than 100 mi-
crons provide cell growth and scaffold vascu-
larization. Too large pores (> 400 microns) 
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reduce the number of intercellular contacts, 
since at this location the cells are closer to the 
conditions of 2D culture [24].

Depending on the physical properties and 
origin, scaffolds are divided into solid and gel-
like, as well as natural and artificial. Depending 
on the application [, the] scaffolds could be 
divided into degradable or non-degradable. The 
materials used for the manufacture of scaffolds 
must be non-toxic, biocompatible, non-immu-
nogenic and thromboresistant.

Solid scaffolds are used in reconstructive 
medicine and preclinical in vitro testing of 
pharmaceutical preparations. In the first case, 
the cells are grown on carriers for possible in 
vivo transplantation to replace degenerative or 
altered tissue (bone, cartilage, ligaments, skin, 
blood vessels, and muscles) [25-27]. In the 
second case the scaffolds are used for modeling 
tumors or tissues in laboratory conditions [28].

Solid scaffolds are fabricated from a wide 
range of materials, including metals, ceramics, 
glass and polymers [29-32]. Depending on the 
structure, the solid scaffolds can be classified 
as networks, fibers, sponges, foams, etc. Such 
structures support a uniform spatial distribu-
tion of cells, their growth, diffusion of nutri-
ents and metabolic products. For the produc-
tion of solid scaffolds of various sizes, struc-
tures, stiffness, porosity and permeability, the 
polymers (Polyglycolide, Poly (ε-caprolactone), 
Poly (ethylene oxide), Polybutylene terephthal-
ate, Poly (L-lactic acid)) and their derivatives 
are most often used [32]. The manufacturing 
process for solid polymer scaffolds depends 
on the bulk and surface properties of the mate-
rial and their intended use. Most production 
methods include applying heat and/or pressure 
to the polymer or its dissolving in an organic 

solvent to impart the material of a required 
shape. For the manufacture of scaffolds, the 
solution casting [33], leaching [34], electro-
molding [35] and 3D printing [36] technolo-
gies are used.

When fabricating scaffolds, it is considered 
that the scale and topography of their internal 
structures are an important factor for three-
dimensional cell culture. In the organism, the 
ECM is a complex nanoscale structure in-
volved in the control of cell behavior [37, 38]. 
When bound to a scaffold, the cells usually 
spread and expand as if they were cultivated 
on a flat surface [39]. Therefore, even small 
changes in the nanoscale scaffold topography 
can have a significant effect on the cell behav-
ior [40]. Cell attachment, growth and behavior 
are influenced not only by the scaffold micro-
scale architecture and structure. The stiffness, 
permeability and mechanical properties of the 
scaffold, as well as the chemical properties of 
its surface, have a significant effect on these 
cell parameters [41]. Therefore, in order to 
improve cell adhesion, the surface of solid 
scaffolds is often modified by covering it with 
peptides (arginine-glycine-aspartic acid) [42], 
gelatin [43], and plasma proteins [44].

To colonize solid scaffolds with cells, two 
approaches are most often used: static and 
dynamic [45, 46]. The most common methods 
of static colonization are surface seeding [47, 
48] and direct insertion of cells into the scaf-
fold [49, 50]. Dynamic methods of seeding 
include forced filling of the scaffold with cells 
(by passing a solution with cells under pressure 
through the scaffold), which provides better 
cell penetration into the scaffold as well as 
their subsequent better growth compared to 
static colonization [45, 46].
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To assess the effectiveness of scaffold col-
onization, the attached cells are trypsinized, 
collected and analyzed using the MTT test 
[51], or cell lysate DNA analysis [52]. Unfor-
tunately, none of these methods can provide 
complete information about the extent of cell 
expansion and the efficiency of their penetra-
tion into scaffolds.

The main disadvantages of using solid scaf-
folds in cell biology are the limited visualiza-
tion of cells in matrices and the difficulties in 
extracting cells from a solid matrix.

Gel-like scaffolds or hydrogels are hydro-
philic polymer networks capable of swelling 
but not dissolving in water, which makes them 
similar to the soft tissues of the body and a 
perfect kind of materials for tissue engineering 
[53-55]. Hydrogels are also highly permeable 
to oxygen, nutrients and metabolites [54-56].

Hydrogels are classified according to their 
ionic charge (neutral, cationic, anionic and 
ampholytic), structure (amorphous, semi-crys-
talline), and fabrication methods (homopoly-
mer, copolymer, multipolymer) [54, 57]. By 
the origin of the polymer, hydrogels are di-
vided into natural, synthetic, and hybrid (syn-
thetic/natural) [53]. Depending on the mecha-
nism of bond formation between the polymer 
chains, hydrogels could be divided into phys-
ical (hydrogen or hydrophobic bonds) and 
chemical (covalent bonds) [54, 58, 59]. The 
type and degree of chains crosslinking affect 
the hydrogels swelling, elastic modulus, per-
meability and stiffness [57].

Natural hydrogels are biologically active, 
compatible and biodegradable [60]. Due to the 
presence of various endogenous factors, con-
tributing to the maintenance of viability, pro-
liferation and differentiation of many types of 

cells, natural hydrogels are capable of stimulat-
ing many cellular functions [61].

To produce natural hydrogels, proteins (col-
lagen, gelatin, fibrin, silk, lysozyme, elastin, 
calmodulin) [62-67], polysaccharides (hyalu-
ronic acid, agarose, dextran, chitosan, heparin, 
alginate) [68-73], and DNA [74, 75] are used. 
Recently, protein scaffolds prepared from a 
mixture of proteins secreted by Engelbreth-
Holm-Swarm mouse sarcoma cells (consisting 
mainly of laminin, type IV collagen, enlactin, 
and various growth factors, which have re-
ceived the commercial name Matrigel) have 
become widespread [76].

Protein-based hydrogels can be obtained by 
thermal exposure to proteins, as well as by the 
use of chemical crosslinking agents. Thus, 
Matrigel, being liquid at 4 °C, turns into a gel 
at 37 °C.

Polysaccharide hydrogels can be produced 
by covalent crosslinking, esterification and 
polymerization. The polysaccharides can also 
be combined with proteins [77, 78].

DNA is able to form hydrogel networks 
through self-assembly, electrostatic interaction, 
chemical crosslinking, or enzymatic ligation 
[74, 75]. The properties of these hydrogels 
depend on the initial concentrations and types 
of DNA monomers [79].

Most hydrogels can also be obtained by 
photopolymerization [59, 80].

The disadvantages of natural hydrogels are 
their potential immunogenicity, probability of 
disease transmission, inconstancy of composi-
tion and relatively poor mechanical properties 
[1, 2, 18].

Synthetic hydrogels are fabricated com-
pletely from synthetic molecules such as poly-
ethylene glycol (Poly (ethylene glycol), poly-
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vinyl alcohol (Polyvinyl alcohol), and poly-
2-hydroxyethyl methacrylate, polylactic acid 
(Polylactide) [81–84]. They are biologically 
inert, but provide structural support for various 
types of cells. Compared to natural ones, syn-
thetic hydrogels have more reproducible phys-
ical and chemical properties, which is crucial 
for tissue engineering. The synthetic polymers 
used in the production of hydrogels can be 
divided into non-biodegradable [85] and bio-
degradable [86].

Biodegradable synthetic hydrogels are used 
to make vascular structures or soft tissues, 
whereas non-biodegradable ones are used to 
construct bones and cartilages.

Although synthetic hydrogels can maintain 
the viability of encapsulated cells based on 
feasibility of ECM formation [87], most of 
them usually function only as passive scaf-
folds that do not promote active cellular in-
teractions [88]. To eliminate this drawback, 
biologically active molecules and proteins 
(promoting cell adhesion, migration, prolif-
eration, and differentiation) are included in 
the composition of synthetic hydrogel net-
works [58, 89].

In hybrid hydrogels obtained by combining 
synthetic hydrogels with natural polymers, the 
synthetic unit provides customizable physical 
properties, and the natural one provides spe-
cific biological functions.

To colonize hydrogels, the cells are either 
mixed with the initial components of a liquid 
scaffold before its formation [3, 90], or added 
to previously formed scaffolds.

After colonization, the cells can reconstruct 
their microenvironment by producing signaling 
molecules and ECM molecules. The cells are 
also capable of migration, proliferation, and 

differentiation. The ideal final result is the 
formation of stable homeostatic state of the 
cells, similar to intact tissue.

In contrast to solid scaffolds, the use of 
hydrogels allows the formation of multilayer 
tissue-like structures. Thus, for example, cer-
tain types of cells are embedded in separate 
hydrogel constructions, which are then super-
imposed on each other, thus forming layers 
similar to tissues in vivo [91].

In addition to artificially manufactured 
(scaffolds from natural or synthetic compo-
nents), researchers use decellularized and de-
vitalized organs and tissues as scaffolds [92]. 
In this type of natural tissue scaffolds, after 
removal of all cellular components that can 
cause an inflammatory reaction, the extant 
ECM retains its composition, architecture, 
integrity, biomechanical properties, biological 
activity, hemocompatibility as well as the abil-
ity to control cell migration, tissue-specific 
gene expression and cell fate. The decellular-
ized material can maintain the integrity of the 
entire organ or its part, or can be subjected to 
further enzymatic treatment in order to transfer 
it to a liquid with subsequent formation of 
ECM-containing hydrogel. After decellulariza-
tion and certain processing, these natural 3D 
scaffolds can be functionalized by repeated 
recellularization with the specific stem or so-
matic cells together with the necessary growth 
factors [92]. The sources for creating such 
natural scaffolds can be the organs and tissues 
of both humans and animals.

Matrix-Free 3D Cultivation Methods
In addition to the 3D cultivation systems using 
matrices (scaffolds), the matrix-free cell cul-
tivation as a part of three-dimensional multi-
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cellular structures (aggregates and spheroids) 
has become widespread.

The ability to form three-dimensional mul-
ticellular structures is based on the tendency 
of cells with three equivalent degrees of free-
dom towards aggregation in the absence of 
substrates, and on the subsequent active forma-
tion of intercellular contacts and (micro)struc-
tures with a minimum surface/volume ratio, 
i.e. spheroids. Spheroids are characterized by 
diffusion of oxygen, nutrients and metabolic 
products inherent to living tissues [93]. In 
spheroids, the microenvironment signals are 
restored simultaneously with a decrease in 
metabolic rates and reduction in the consump-
tion of ATP and oxygen [94]. This is associ-
ated with an increase in cell survival in the 
composition of spheroids. In addition to an 
increase in the survival time of functionally 
active cells, the configuration of spheroids (due 
to the minimum surface to volume ratio) al-
lows one to achieve cell density per unit vol-
ume comparable with cell density in organs 
[95]. Moreover, many cells within the spheroid 
take the most energy-efficient spherical shape 
[96], which, according to some researchers, 
can induce the reexpression of earlier genes, 
as well as the activation of cell regeneration 
genes [97].

The advantage of spheroids over more com-
plex 3D scaffold-based matrix systems is the 
simpleness of their analysis by visualization 
using light, fluorescence and confocal micros-
copy.

Spheroid Formation Methods. Almost all 
methods for generating spheroids include 3 
main stages: formation of loose cell aggre-
gates; induction of cadherin expression, during 
which cell aggregates condense; compaction 

of aggregates resulting in formation of spher-
oids. The formation of loose aggregates, as a 
rule, occurs during cultivation at high cell 
density (0.5–4×106 cells/ml) under conditions 
that prevent or impede the attachment of cells 
to the substrate. In this case, the formation of 
loose aggregates occurs with the participation 
of both cadherins and integrins. The intercel-
lular contacts formed during the aggregation 
process lead to an increase of cadherin expres-
sion, which accumulates on the membrane 
surface. Further, due to the intensification of 
cadherin mediated intercellular interactions, a 
morphological transition occurs from loose cell 
aggregates to compact spheroids [98].

The methods for the formation of spheroids 
can be divided into static – cell self-assembly, 
and dynamic – assembly of cells based on 
forced collisions (Table). Self-assembly is a 
process that takes place in a static environment 
in which cells cannot attach to the surface and 
thus come into contact with each other, form-
ing aggregates.

The formation of spheroids during self-as-
sembly can occur during cell cultivation on 
adhesive [99] and non-adhesive [100-103] 
surfaces, as well as in the absence of an attach-
ment surface (hanging drop culture, [104, 105] 
emulsion technologies [106]).

In dynamic conditions, the formation of 
spheroids occurs under the influence of exter-
nal forces [107-111], when, preventing the 
attachment of cells to the substrate, their col-
lision and subsequent adhesion are initiated. 
Gravitational and centrifugal forces [107, 108, 
110, 112], magnetic [109] and electric [113] 
fields, as well as acoustic waves [111] (Table) 
can be used as external forces. At the same 
time, as previously noted, a prerequisite for 
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spheroid formation, regardless of the methods 
used, is cultivation at high cell density (0.5–
4×106 cells/ml).

All methods for the formation of spheroids 
have both advantages and disadvantages 
(Table). Among the disadvantages, it should 
be noted the difficulty of obtaining a suffi-
ciently large number of spheroids (standard in 
size and shape) during short time, at low cost 
of labor and means.

 The methods of self-assembly on adhesive 
and non-adhesive surfaces are simple, inex-
pensive, well reproducible, allowing the pro-
duction of a large number of spheroids. 
However, they are characterized by high vari-
ability of spheroids’ shape and size and are 
applicable only to certain types of cells.

Using the “hanging drop” method and emul-
sion technologies allows obtaining of standard 
size spheroids in a controlled microenviron-
ment, but at the same time these methods are 
highly labor intensive, require special equip-
ment, and the forming spheroids are character-
ized by small sizes. The “hanging drop” meth-
od also does not allow obtaining a sufficiently 
large number of spheroids [104, 105].

The use of various types of rotation and 
rocking are simple and high productivity meth-
ods that provide good conditions for delivery 
of nutrients and oxygen, removal of waste 
products, possibility of long-term cultivation 
in a controlled microenvironment [107, 108]. 
However, these methods do not allow obtain-
ing spheroids of standard size and shape. A 
significant part of the spheroids is characte-
rized by large sizes, which is accompanied by 
the death of a part of the cells.

The use of magnetic and electric fields, as 
well as acoustic waves makes it possible to 

obtain spheroids of a controlled size and shape 
from various types of cells in a short period of 
time [109, 111, 113]. However, the cell ag-
gregates may lose their integrity after the re-
moval of “force”. Additionally, the influence 
of “external force” can lead to cell damage.

An important parameter of the formed 
spheroids is their size, which, depending on 
the production methods, can vary over a wide 
range – from 50 to 1000 μm. It was found 
that cell viability decreases with an increase 
of the spheroid size [114]. This is explained 
by the fact that an increase of spheroid size 
is accompanied by formation of gas and sub-
stance distribution gradients [115, 116]. This 
leads to both the impaired diffusion of oxygen 
and nutrients to the central cells, and the ac-
cumulation of carbon dioxide and waste prod-
ucts in them. Such processes occurring in 
large spheroids lead to the formation of seve-
ral cell layers: a necrosis zone, located in the 
center and consisting of dead cells; a zone of 
living cells in a resting state; and an outer 
zone consisting of viable, metabolically ac-
tive cells [117]. Thus, there is a necessity to 
determine the sizes of spheroids that ensure 
maximum cell viability and productivity. 
Numerous studies have shown that the spher-
oids with a diameter up to 100 μm are char-
acterized by a low risk of developing hy-
poxic conditions [115, 116, 118]. In contrast, 
the spheroids with a diameter exceeding 
200 μm are at an increased risk of oxygen 
deficiency in the central zone, leading to cell 
death [117, 118].

 The dynamic cultivation conditions con-
tribute to an increase of the diffusion rates of 
oxygen, nutrients and metabolites, which al-
lows enlarging the size of spheroids consisting 
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entirely of viable cells. In order to ensure con-
tinuous supply of oxygen to the spheroids 
during cultivation, special gas-permeable chips 
have also been developed [119]. They provide 
an opportunity to increase the size of spheroids 
consisting of viable cells up to 600 μm.

Conclusion
Thus, the development of three-dimensional 
cultivation systems has become an important 
step towards the creation of cell models that, 
by their characteristics, are closer to intact tis-
sues in vivo. However, unlike 2D cultivation 
systems, there is still no standard approach for 
3D cultivation systems. Noteworthy, the de-

velopment of such a universal approach is 
challenging because of the complexity of ECM 
composition and structure, the physiological 
characteristics of different types of cells, the 
specificity of mechanical properties, biochem-
ical signals, intercellular and cell-matrix con-
nections in different tissues.

The matrix 3D cultivation systems allow 
the development of structures that, due to their 
mechanical properties, porosity and biological 
activity, mimic living tissues in vivo. 
Nevertheless, biochemical signals and, mainly 
intercellular and cell-matrix bonds in these 
structures can differ significantly from natural 
ones. Moreover, the cell cultivation in scaf-

Table. Methods for multicellular spheroids formation.

Method Advantages Disadvantages
Static Cultivation 

on non-
adhesive 
surfaces and 
in hanging 
drop

Polymer coating [100-10 3] – low cost
– simplicity of the procedure
– availability
– reproducibility
– high productivity

–  MCS size and shape 
variability

– laboriousness
–  lack of cell-matrix 

interaction
Hanging drop [104] – standard size of MCS 

– controlled microenvironment 
 – reproducibility

– laboriousness
– small size of MCS
–  the difficulty of obtaining 

large quantities of MCS
–  use of special equipment

Super Hydrophobic Chips 
[105]
Emulsion technology [106]

Dynamic Action of 
external 
forces

Rotating cell culture system 
[107, 108]

– simplicity of the method
– high productivity
– long-term cultivation
– control of microenvironment

–  MCS shape and size 
variability

– MCS damage
–  lack of cell-matrix 

interaction

Rocked cell culture system 
[110]

Magnetic field [109] – MCS size and shape control
–  applicability to various types 

of cells for MCS formation
–  co-cultivation of various types 

of cells for MCS formation
– fast MCS formation

–  loss of MCS integrity 
after the removal of 
“power”

–  cell damage due to 
external force

–  lack of cell-matrix 
interaction

Electric field [113]

Acoustic waves [111]
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folds can often be characterized as 2D in 3D, 
since the cells in three-dimensional surface of 
the scaffolds attach, spread and migrate in the 
same way as the cells cultured under adherent 
two-dimensional conditions.

In multicellular spheroids, the intercellular 
contacts similar to tissues are reproduced as 
well as the gradients of oxygen, carbon diox-
ide, nutrients and metabolic products. However, 
in spheroids, as a rule, there is a lack of cell-
matrix interaction. It is not completely clear 
which cells assemble into spheroids and what 
is the degree of conformity between the struc-
ture and composition of ECM formed in spher-
oids and the natural one. In spheroids, as well 
as in matrix cultures, the cellular signaling 
pathways differ from signaling pathways in 
tissues in vivo, which also causes differences 
in the behavior of cells in spheroids compared 
with the behavior of living tissues cells. The 
optimal size of the spheroids, on which the 
metabolism, gene expression, and stem char-
acteristics of cells depend, is also indetermi-
nate. The influence of spheroid formation 
methods on the state and properties of cells is 
inexplicit. Thus, for example, the spontane-
ously formed spheroids probably consist of 
comparably homogeneous population of cells 
capable of aggregation, whereas the forcedly 
generated spheroids apparently contain differ-
ent types of cells.

Currently, the efforts of numerous re-
searchers are aimed at resolving these com-
plex issues. New 3D cultivation systems and 
new approaches are being developed, includ-
ing the combining of matrix cultivation sys-
tems with matrixless ones, as well as the 
bioprinting using spheroids, natural and arti-
ficial matrices.
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Системи тривимірного культивування клітин

О. М. Сукач, М. В. Шевченко

В огляді обговорюються особливості тривимірних 
систем культивування клітин на носіях (скафолдах) і 
без носіїв. Скафолди використовують з метою імітації 
позаклітинного матриксу, а також для відтворення 
природного фізичного і структурного мікрооточення 
клітин, подібного живій тканині. В огляді розгляда-
ються типи скафолдів (жорсткі і гелевидні, природні 
та штучні, що розкладаються і не розкладаються), їх 
характеристики, переваги, недоліки та особливості 
заселення клітинами. Обговорюється використання в 
якості скафолдів децеллюлялізованих і девіталізованих 
органів і тканин. Також в огляді розглядається безма-
триксне культивування клітин у складі тривимірних 
багатоклітинних структур – сфероїдів. Обговорюється 
структура і біологія сфероїдів. Розглядаються особли-
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вості утворення сфероїдів в статичних (самозбірка) і 
динамічних (під впливом зовнішніх сил) умовах куль-
тивування. Обговорюється роль розміру сфероїдів для 
виживання клітин.

К л юч ов і  с л ов а: клітини, 3D клітинна культура, 
скафолди, сфероїди.

Системы трехмерного культивирования клеток

А. Н. Сукач, М. В. Шевченко

В обзоре обсуждаются особенности трехмерных си-
стем культивирования клеток на носителях (скаффол-
дах) и без носителей. Скаффолды используют с целью 
имитации внеклеточного матрикса, а также для вос-
создания естественного физического и структурного 
микроокружения клеток, подобного живой ткани. В 
обзоре рассматриваются типы скаффолдов (жесткие и 
гелеобразные, природные и искусственные, разлагае-

мые и не разлагаемые), их характеристики, преиму-
щества, недостатки и особенности заселения клетками. 
Обсуждается использование в качестве скаффолдов 
децеллюлялизированных и девитализированных орга-
нов и тканей. Также в обзоре рассматривается безма-
триксное культивирование клеток в составе трехмер-
ных многоклеточных структур – сфероидов. 
Обсуждается структура и биология сфероидов. 
Рассматриваются особенности образования сфероидов 
в статических (самосборка) и динамических (под воз-
действием внешних сил) условиях культивирования. 
Обсуждается роль размера сфероидов для выживания 
клеток.

К л юч е в ы е  с л ов а: клетки, 3D культура клеток, 
скаффолды, сфероиды.
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