Первичная структура тРНК^{Ser} из Thermus thermophilus

3. М. Петрушенко, О. П. Коваленко, Н. Н. Мальченко, И. А. Крикливый, А. Д. Яремчук, М. А. Тукало

Институт молекулярной биологии и генетики НАН Украины 252143, Киев, ул. Академика Заболотного, 150

> Изучена первичная последовательность двух изоакцепторных тРНК^{Ser} из Т. thermophilus, содержащих различные антикодоны. При сравнении первичных последовательностей было установлено, что гомология составляет 60 ⁹⁷/₇₀. Основные отличия наблюдаются в вариабельных ветвях и антикодоновых стеблях, в то время как акцепторные стебли и Т-ветви полностью идентичны, а D-ветви отличаются лишь одной парой нуклеотидов.

Введение. Интерес к сравнительному изучению первичных последовательностей тРНК^{Ser} из T. thermophilus вызван несколькими причинами. Прежде всего, из литературы известно, что в процессе аминоацилирования тРНК^{Ser} узнавание ее гомологичной аминоацил-тРНК синтетазой реализуется специфическим кодоннезависимым способом [1]. Такое кодоннезависимое узнавание характерно только для тРНК^{Leu} и тРНК^{Sec}, относящихся ко II структурному классу [1-4], а также для тРНК^{Аla}, относяшейся к І классу тРНК с короткой вариабельной петлей [5]. Кроме того, для тРНК^{Ser} Escherichia coli показано, что важную роль в процессе узнавания серил-тРНК синтетазой играет пространственная структура тРНК, при этом особое внимание уделяется структуре D-ветви и вариабельному району [1]. Следует отметить также, что, согласно генетическому коду, аминокислоте серину соответствуют шесть различных кодонов. В связи с этим было бы интересно сравнить нуклеотидные последовательности изоакцепторных тРНК^{Ser} с различными антикодонами, что может служить основой для дальнейших исследований пространственных структур этих тРНК и изучения участков взаимодействия с гомологичной аминоацил-тРНК синтетазой.

Другой причиной являются экстремальные ус-

ся вероятным, что макромолекулы этого организма могут иметь свои структурные особенности. В частности известно, что молекулы тРНК из *T. thermophilus* более термостабильны, чем аналогичные молекулы из *E. coli* [6—9]. Расшифровка первичных структур нескольких тРНК из *T. thermophilus* показала, что наличие набора трех модифицированных оснований: s^2T и m^4A в T-петле и Gm в D-петле может быть причиной более высокой термостабильности этих молекул [10, 11]. **Материалы и методы.** тРНК₁^{Ser} и тРНК₂^{Ser} получали из суммарного препарата тРНК *T. thermophilus* в несколько стадий: хроматография на

ловия обитания T. thermophilus - горячие источни-

ки с температурой воды 60-85 °C, поэтому кажет-

получали из суммарного препарата тРНК *T. thermophilus* в несколько стадий: хроматография на колонке с БД-целлюлозой, дальнейшая очистка на колонках с DEAE 5PW и C3 с использованием оборудования для высокоэффективной жидкостной хроматографии (ВЭЖХ) «Gold System» («Beckman», Австрия). Чистоту полученной тРНК определяли электрофорезом в полиакриламидном геле (ПААГ) в присутствии 8 М мочевины.

В экспериментах использовали РНК-лигазу (КФ 6. 5. 1. 3), полинуклеотидкиназу (КФ 2. 7. 1. 78), выделенную из клеток *E. coli*, инфицированных фагом Т4 («Pharmacia», Швеция), Т₁-РНКазу (КФ 3. 1. 27. 3; «Sankyo», Япопия); шелочную фосфатазу из *E. coli* (КФ 3. 1. 3. 1; «Sigma», США), щелочную фосфатазу кишок теленка (3. 1. 3. 1, «Boehringer», ФРГ); [α -³²Р]АТР, удельная

^{© 3.} м. петрушенко, о. п. коваленко, н. п. мальченко, и а. крикливый, а. д. яремчук, м. а. тукало, 1997

активность 3000 Ки/ммоль, ³²Р-цитидиндифосфат, удельная активность 3000 Ки/ммоль («Amersham», Англия).

тРНК,^{Ser} и тРНК₂^{Ser}, ³²Р-меченную по 3'- и 5'-концу, получали, как описано в работах [11] и [12] соответственно.

Нуклеотидную последовательность тРНК^{Ser} определяли методом быстрого гель-секвенирования с использованием диметилсульфата, гидразина («Fluka», Швейцария), диэтилпирокарбоната («Merck», ФРГ), как в работе [13], а также методом гидролиза нуклеазами T_1 , U_2 , Phy M, Bacillus cereus и CL 3 («Pharmacia», [15]).

Модифицированные основания тРНК^{Ser} определяли следующим образом: 1) гидролизовали 20 мкг тРНК Т₁-РНКазой и разделяли полученные фрагменты тРНК на микроколонке с DEAE-целлюлозой в градиенте концентрации NaCl при нейтральном рН в присутствии 7 М мочевины; 2) рехроматографировали олигонуклеотиды на колонке с DEAEцеллюлозой в градиенте NaCl при рН 3,5 в присутствии 7 М мочевины с одновременной детекцией поглощения материала по длинам волн 250, 260, 270, 280, 290, 330 нм на ультрамикроспектрофотометре «Милихром 1А», ПО «Научприбор», Россия) [16]; 3) обессоливали разделенные нуклеотиды на колонке с DEAE-целлюлозой в триэтиламмонийбикарбонатном буфере; 4) гидролизовали олигонуклеотиды нуклеазой А, фосфодиэстеразой змеиного яда, щслочной фосфатазой кишечника теленка; 5)

Рис. 1. Разделение нуклеозидов тРНК₁^{Ser} (a) и тРНК₂^{Ser} (b) на колонке C18 с использованием ВЭЖХ

полученные нуклеозиды разделяли на колонке C18 с применением Gold System [17].

Результаты и обсуждение. Нуклеотидные последовательности тРНК₁^{Ser} и тРНК₂^{Ser} были определены при использовании как химических реагентов, так и набора нуклеаз, специфичных к различным основаниям в тРНК [14, 15]. Для более точного анализа проведено несколько экспериментов с разделением меченых олигонуклеотидов в 10, 12,5 и 20 %-м ПААГ (результаты не представлены).

Минорные основания молекул исследовали с помощью ВЭЖХ [17] с использованием колонки C18 (рис. 1). Из этого рисунка видно, что, кроме четырех главных азотистых оснований, тРНК₁^{Ser} в своем составе содержит минорные основания: Ψ , m¹A, m¹G, Gm, t⁶A; а тРНК₂^{Ser} — основания Ψ , m¹A, Gm и ms²i⁶A. Вид минорного компонента тРНК определяли как по времени элюции с колонки, так и по спектральным характеристикам.

Чтобы определить место расположения моди-

фицированного основания в молекуле нами был проведен гидролиз тРНК Т₁-нуклеазой. Полученные олигонуклеотиды были разделелны по длине (при нейтральном pH), а затем по заряду (при кислом рН) на микроколонке с DEAE-целлюлозой с детекцией поглошения материала по шести плинам волн на ультрамикроспектрофотометре «Милихром» (рис. 2, 3). Нуклеозидный состав каждого олигонуклеотида определяли с помощью ВЭЖХ после обработки его нуклеазой А, фосфомоноэстеразой и фосфодиэстеразой змеиного яда (таблица). В ходе этих экспериментов были выявлены еще два минорных основания: s²T и D, которые не были обнаружены при разделении нуклеозидов целой тРНК при ВЭЖХ. Дигидроуридин обнаружен во фрагментах Т-6 (см. рис. 2) и Т-5 (см. рис. 3) по методике, описанной в работе [13].

. .

На основании данных, полученных методами быстрого гель-секвенирования, ВЭЖХ и микроколоночной хроматографии, можно полностью реконструировать первичные структуры тРНК,^{Ser} и

Фракция	Олигонуклеотид	
	TPHK ₁ Ser	тРНК2 ^{Ser}
Т-1	Gp	Gp
T-2	СрБр	СрБр
Т-3	UpGp	UpGp
~ T-4	СрСрБр	СрСрБр
T-5	UpUpGp{	UpUpGp
Т-б	СрDрGр	CpDpGp
Т-7	UpGmpGp	UpGmpGp
Т-8	АрАрБр	АрАрGр
Т-9	s ² ΤpΨpCpGp	АрАрGр
T-10	СрАрСрСрGр	СрUрАрGp
T-11	m ¹ ApApUpCpCpCpGp	ͽ ² ΤρΨϼϹϼ G ϼ
T-12	CpUpt ⁶ ApApGp	ΑρϹϼΑϼϹϼGϼ
T-13	СрАрСрСрСрUрGр	m ¹ ApApUpCpCpCpGp
T-14	ΑρΑρΑρΑρCρCρGp	ms ² i ⁶ ApApApΨpCpGp
T-15	CpCpCpUpCpUpCpCpGp	ϹϼϹϼϹϼႮϼϹϼϹϼႮϼ
T-16	_	ϹϼႮϼႮϼΑϼΑϼΑϼϹϼϹϼႮϼϹϼϹϼϹϼႮϼϹϼϬϼ

Определение последовательности оснований в олигонуклеотидах полного T₁-PHKазного гидролизата тPHK1^{Ser} и тPHK2^{Ser}

П р и м е ч а н и е. Gp — GMP; I — псевдоуридин; D — дигидроуридин; m^1A-1 — метиладенозин; t^6A — N-((9- β -D-рибофуранозилпурино-6-ил) карбамоил) треонин; m^1G — метилгуанозин; Gm — 2'-О-метилгуанозин; s^2T — 5-метил-2-тиоуридин; $ms^{2}t^6A$ — 2метилтио-N6-изопентил-аденозин

Рис. 2. Хроматография исчернывающего T_1 -РНКазного гидролизата тРНК₁^{Ser} из *T. thermophilus* (0,5 OE₂₀₀) на DEAE-целлюлозе (колонка 0,5 × 70 мм) в линейном градиенте концентрации NaCl в присутствии 7 М мочевины, pH 7,5 (*a*); рехроматография отдельных фракций (*б*). Фракции T-(1—8) рехроматографировали на колонке с DEAE-целлюлозой размером 0,5 × 50 мм, а T-(9—15) — на колонке размером 0,5 × 70 мм в присутствии 7 М мочевины при pH 3,7

Рис. 3. Хроматография исчернывающего T_1 -РНКазного гидролизата тРНК2^{Ser} из *T. thermophilus* (0,5 OE_{260}) на DEAE-целлюлозе (колонка 0,5 × 70 мм) в линейном градиенте концентрации NaCl в присутствии 7 М мочевины, pH 7,5 (α); рехроматография отдельных фракций (δ). Фракции T-(1--7) рехроматографировали на колонке с DEAE-целлюлозой размером 0,5 × 50 мм, а T-(8--16) — на колонке размером 0,5 × 70 мм в присутствии 7 М мочевины при pH 3,7

Рис. 4. Структура тРНК.^{Ser} (a) и тРНК.^{Ser} (b) из T. thermophilus в виде клеверного листа; в — структура тРНК^{Ser} E. coli [20]. Модификации оснований не учитываются. Обозначены нуклеотиды, абсолютно консервативные для тРНК серинового семейства. Точками обозначены места вариаций сиквенса. тРНК^{Ser} имеют различное количество нуклеотидов в вариабельном районе, что показано сплошной линией

тРНК₂^{Set} из *T. thermophilus* (рис. 4). тРНК, ^{Set} состоит из 93 нуклеотидов, тРНК₂^{Set} — из 94. Каждая тРНК содержит по семь модифицированных оснований. Местоположение m¹G в структуре тРНК, ^{Set} нами нс определено, но, опираясь на литературные данные о расположении модифицированных оснований в структуре тРНК [18], мы предполагаем, что m¹G находится в положении 9. Остальные минорные компоненты находятся в положениях, идентичных для обеих тРНК, кроме Ψ 39. В тРНК₁^{Set} в положении 39 расположен гаунозин.

Как видно, обс тРНК имеют те же особенности первичной структуры, что и ранее изученные тРНК, выделенные из *T. thermophilus*, а именно: наличие Gm, s^2 T и m¹A.

Следует отметить, что представленная структура тРНК₂^{Ser} не совпадает с ранее опубликованными данными о последовательности гена этой тРНК [19], однако корректность нашей структуры подтверждена независимыми исследованиями структуры гена тРНК₂^{Ser} (Тукало и др., неопубликованные результаты).

На рис. 4 представлены структуры тРНК,^{Ser} и тРНК₂^{Ser} в виде клеверного листа. Как следует из этого рисунка, акцепторные стебли и Т-ветви полностью идентичны. D-ветви отличаются только инвертированной парой 10.25. В положении 26 обеих

тРНК находится пурин, но в тРНК $_1^{Ser}$ это гуанозин, а в тРНК $_2^{Ser}$ — аденозин.

Наибольшие отличия затрагивают антикодоновые стебли и вариабельные ветви, причем последние различаются не только нуклеотидной последовательностью, но и длиной (19 нуклеотидов в тРНК₁^{Ser} и 20 — в тРНК₂^{Ser}). Эти данные хорошо согласуются с результатами, полученными при изучении структурных основ дискриминации между тРНК II класса из E. coli [1]. Согласно выводам, сделанным в этой работе, для специфического узнавания тРНК^{Ser} серил-тРНК синтетазой необходимо наличие вариабельного стебля длиной не менее чем 4 пары оснований, при этом нуклеотидная последовательность всей вариабельной ветви неважна. Различия в последовательностях антикодоновых вствей еще раз подтверждают необязательное их участие в процессах взаимодействия и узнавания серил-тРНК синтетазой.

Из рис. 4 видно хорошее соответствие между первичными структурами $\text{тPHK}_1^{\text{Ser}}$ и $\text{тPHK}_2^{\text{Ser}}$ из *T*. thermophilus и «усредненной» последовательностью сериновых тРНК из *E. coli* [20]. Участки гомологии затрагивают в основном структурные элементы, участвующие в создании L-формы молекулы. Это указывает на то, что в клетках *T. thermophilus* процесс узнавания тРНК^{Ser} серил-тРНК синтетазой происходит аналогичным образом при определяющей роли пространственой структуры тРНК, что хорошо согласуется с данными по структуре комплекса тРНК^{Ser} с серил-тРНК синтетазой из *T. thermophilus*, изученного методом рентгеноструктурного анализа [21, 22].

3. М. Петрушенко, О. П. Коваленко, Н. Н. Мальченко, І. А. Крикливий, Г. Д. Яремчук, М. А. Тукало

Первинна структура тРНК^{Ser} з Thermus thermophilus

Резюме

Вивчено нуклеотидні послідовності двох ізоакцепторних mPHK^{Ser} із Т. thermophilus, які мають різні антикодони. При порівнянні нуклеотидних послідовностей було встановлено, що гомологія складає 60 %. Основні відмінності стосуються структури варіабельних та антикодонових гілок, у той час як акцепторні стебла та Т-гілки повністю ідентичні, а D-гілки відрізняються лише однією парою нуклеотидів.

Z. M. Petrushenko, O. P. Kovalenko, N. N. Maľchenko, I. A. Krikliviy, A. D. Yaremchuk, M. A. Tukalo

The primary structure of tRNA^{Ser} from Thermus thermophilus

Summary

Sequences of two serine isoacceptor tRNAs from Thermus thermophilus, containing different anticodons have been studied. The homology of sequences is 60 %. The major differences have been found in anticodon and variable arms. Acceptor stems and T-arms have the same structures and D-arms differ by only one base pair.

СПИСОК ЛИТЕРАТУРЫ

- Asahara H., Himeno H., Tamura K. et al. Escherichia coli seryl-tRNA synthetase recognizes tRNA^{Set} by its characteristic tertiary structure // J. Mol. Biol.—1994.—236.—P. 738—748.
- 2. Asahara H., Himeno H., Tamura K. et al. Recognition nucleotides of *Escherichia coli* tRNA^{tev} and its elements facilitating discrimination from tRNA^{Ser} and tRNA^{Tyr} // Ibid.— 1993.—231.—P. 219—229.
- Петрушенко З. М., Тукало М. А., Гудзера О. И. и др. Определение участков взаимодействия тРНК^{Leu} молочной железы коров с гомологичной аминоацил-тРНК синтетазой методом химических модификаций // Биоорг. химия.— 1990.—16.—С. 1647—1652.
- Dietrich A., Romby P., Marechal-Drouard L. et al. Solution conformation of several free tRNA^{Leu} species from bean, yeast and Escherichia coli and interaction of these tRNAs with bean cytoplasmic leucyl-tRNA synthetase. A phosphate alkylation study with ethylnitrosourea // Nucl. Acids Res.-1990.-18.-P. 2589-2597.
- Tamura K., Asahara H., Himeno H. et al. Identity elements of E. coli tRNA^{Ala} // J. Mol. Recogn.-1991.
- 6. Davanloo P., Sprinzl M., Watanabe K. et al. Role of ribthymidine in the thermal stability of transfer RNA as monitored

by proton magnetic resonance // Nucl. Acids Res.-1979.-6.-P. 1571-1581.

- Oshima T., Sakaki Y., Wakayama N. et al. // Experientia.— 26, Suppl.—P. 317--331.
- Watanabe K., Oshima T., Iijima K. et al. Purification and thermal stability of several amino acid-specific tRNAs from an extreme thermophile, *Thermus thermophilus* 11B8 // J. Biochem. (Tokyo).-1980.-87, N 1.-P. 1-13.
- Watanabe K., Oshima T., Nishimura S. CD spectra of 5-metyl-2-thiouridine in tRNA^{Met} from extreme thermophile // Nucl. Acids Res.—1976.—3.—P. 1703—1713.
- Horie N., Hara-Yokoyama M., Yokoyamu S. et al. Two tRNA^{lle} species from an extreme thermophile, *Thermus thermophilus* HB8: effect of 2-thiolation of ribothymidine on the thermostability of tRNA // Biochemistry.-1985.-24.-P. 5711-5715.
- Watanabe K., Kuchino Y., Yamaizumi Z. et al. // J. Biochem. (Tokyo).-1979.-86.-P. 893-905.
- Bruce A. G., Uhlenbeck O. C. Reaction at termini RNA with T4 RNA ligase // Nucl. Acids Res.—1978.—5, N 10.— P. 111—121.
- 13. Венкстерн Т. В. Первичная структура транспортных рибонуклеиновых кислот. М.: Наука, 1970. 258 с.
- Peattee D. A. Direct chemical method for sequencing RNA/OO // Proc. Nat. Acad. Sci. USA.-1979.-76, N 4.-P. 1760-1764.
- Donis-Keller H., Maxam A. M., Gilbert W. Mapping adenines, guanines and pyrimidines in RNA // Nucl. Acids Res.— 1977.—4, N 8.—P. 2527—2538.
- Власов В. В., Грачев М. А., Комарова П. И. и др. Ионообменная хроматография и спектральный анализ олигонуклеотидов в микромасштабе // Молекуляр. биология.—1972.—6, № 6.—С. 808—816.
- Gehrke C., Kuo K. Ribonucleoside analysis by reversed-phase high-performance liquid chromatography // J. Chromatogr.— 1989.—471, N 1.—P. 3—36.
- Sprinzl M. M., Dank N., Nock S., Schon A. Compilation of tRNA sequences and sequences of tRNA genes // Nucl. Acids Res.-1991.-19, Suppl.-P. 2127-2171.
- Venegas A. T. thermophilus HB8 tRNA^{Ser} gene // EMBL data bank entry X07394.—1988.
- Himeno H., Hasegava T., Ueda T. Convertion of aminoacylation specificity from tRNA^{Tyr} to tRNA^{Ser} in vitro // Nucl. Acids Res.--1990.--18, N 23.--P. 6815--6818.
- Biou V., Yaremchuk A., Tukalo M., Cusack S. The 2.9 Å crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA^{Ser} // Science.-1994.-263.-P. 1404-1410.
- 22. Cusack S., Yaremchuk A., Tukalo M. The crystal structure of the ternary complex of Thermus thermophilus seryl-tRNA synthetase with tRNA^{Ser} and a scryl-adenylate analogue reveals a conformational switch in the active site // The EMBO J.-1996.-15, N 11.-P. 2834-2842.

УДК 577.113.5 Поступила в редакцию 27.05.97