Biopolym. Cell. 1998; 14(6):488-499.
Огляди
Взаємодія ендофітних бактерій з рослиною на клітинному та молекулярному рівнях
1Козировська Н. О.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

В огляді надається інформація про локалізацію ендофітних бактерій у тканинах рослий, а також обговорюються шляхи, та механізми проникнення бактерій всередину рослини. Розглядаються методи детекції ендофітів (Середині рослин (цитохімічні, імунологічні, молекулярно-генетичні).

References

[1] Hollis J. P Bacteria in healthy potato tissue. Phytopathology. 1951; 44:351-66.
[2] Martin JK. Factors influencing the loss of organic carbon from wheat roots. Soil Biol Biochem. 1977;9(1):1–7.
[3] Balandreau J, Knowles R. The rhizosphere. Interactions between nonpathogenic soil microorganisms and plants. Eds Y. R. Dommergues, S. V. Krupa. Amsterdam: Elsevier, 1978: 243-268.
[4] Patriquin DG, D?bereiner J. Light microscopy observations of tetrazolium-reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Can J Microbiol. 1978;24(6):734-42.
[5] Patriquin DG, D?bereiner J, Jain DK. Sites and processes of association between diazotrophs and grasses. Can J Microbiol. 1983;29(8):900–15.
[6] Burris RH. 100 years of discoveries in biological N2-fixation . Nitrogen fixation: hundred years after. Eds H. Bothe, F. J. de Bruijn, W. E. Newton. Stuttgart; New York: Gusiav Fisher, 1988: 21-30.
[7] Weller D. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol. 1988;26(1):379–407.
[8] Gunner HB, Zuckerman BM, Walker RW, Miller CW, Deubert KH, Longley RE. The distribution and persistence of diazinon applied to plant and soil and its influence on rhizosphere and soil microflora. Plant Soil. 1966;25(2):249–64.
[9] Brown ME. Plant Growth Substances Produced by Micro-organisms of Soil and Rhizosphere. J Appl Bacteriol. 1972;35(3):443–51.
[10] Rovira AD. Microbial inoculation of plants. I. Establishment of free-living nitrogen-fixing bacteria in the rhizosphere and their effects on maize, tomato, and wheat. Plant Soil. 1963; 19(3): 304-14.
[11] Brown ME, Burlingham SK, Jackson RM. Studies on Azotobacter species in soil. Plant Soil. 1964;20(2):194–214.
[12] Cooking E, Gough C, Webster G. et al. Intercellular colonization of non-legumes by Azorhizobium caulinodans is stimulated by specific flavonoids. Biological fixation of nitrogen for ecology and sustainable agriculture: Abstr. book. Poznan, 1996: 253.
[13] Christiansen-Weniger C. N2-fixation by ammonium excreating Azospirillum brasilense auxin-induced root tumors of wheat (Triticum aestivum L. Biol Fertil Soils. 1992;13: 165-72.
[14] Kordyum VA, Kozyrovskaya NA, Gvozdyak RI, Muras VA. Transfer of plasmid RP41 markers into Xanthomonas beticola. Dopovidi Akad Nauk Ukr RSR. Ser B. 1980; (5):78-81.
[15] Kozyrovska N, Alexeyev M, Kovtunovych G. el al. Survival of Klebsiella oxytoca VN13 engineered to bioluminescence on barley roots during plant vegetation. Microb Releases. 1994; 2: 261-5.
[16] McInroy JA, Kloepper JW. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Can J Microbiol. 1995;41(10):895–901.
[17] Musson G, Mcinroy JA, Kloepper JW. Development of delivery systems for introducing endophytic bacteria into cotton. Biocontrol Sci Technol. 1995;5(4):407–16.
[18] Reinhold B, Hurek T, Fendrik I. Cross-reaction of predominant nitrogen-fixing bacteria with enveloped, round bodies in the root interior of kallar grass. Appl Environ Microbiol. 1987;53(4):889-91.
[19] Reinhold-Hurek M, Hurek T. Capacities of Azoarcus sp. a new genus of grass-associated diazotrophs. New horizons in nitrogen fixation: Proc. 9th Int. Congr. Nitrogen Fixation (6-12 December 1992, Cancun, Mexico). Eds R. Palasios, J. Mora, W. E. Newton. Dordrecht: Kluwer, 1993: 671-675.
[20] Hurek T, Van Montagu M, Kellenberger E, Reinhold-Hurek B. Induction of complex intracytoplasmic membranes related to nitrogen fixation in Azoarcus sp. BH72. Mol Microbiol. 1995;18(2):225-36.
[21] Egener T, Hurek T, Reinhold-Hurek B. Use of green fluorescent protein to detect expression of nif genes of Azoarcus sp. BH72, a grass-associated diazotroph, on rice roots. Mol Plant Microbe Interact. 1998;11(1):71-5.
[22] Dobereiner J, Reis VM, Lazarini AC. New N2-fixing bacteria in association with cereals and sugar cane. Nitrogen fixation: hundred years after. Eds H. Bothe et al. Stuttgard: Gustav Fisher, 1988: 717-22.
[23] Cavalcante VA, Dobereiner J. A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant and Soil. 1988;108(1):23–31.
[24] Li R, MacRae JC. Specific association of Acetobacter diazotrophicus with sugar cane. Soil Biol Biochem. 1991; 23:999-1002.
[25] Dobereiner Reis VM, Paula MA, Olivares F. Endophytic diazotrophs in sugar cane, cereals and tuber plants. New horizons in nitrogen fixation: Proc. 9th Int. Congr. Nitrogen Fixation (6-12 December 1992, Cancun, Mexico). Eds R. Palasios et al. Dordrecht: Kluwer, 1993: 671-675.
[26] Paula MA, Reis VM, Dobereiner J. Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biol Fertil Soils. 1991;11(2):111–5.
[27] Stephan MP, Oliveira M, Teixeira KRS, Martinez-Drets G, Dabereiner J. Physiology and dinitrogen fixation of Acetobacter diazotrophicus. FEMS Microbiology Lett. 1991;77(1):67–72.
[28] Cojho EH, Reis VM, Schenberg ACG, Dabereiner J. Interactions of Acetobacter diazotrophicus with an amylolytic yeast in nitrogen-free batch culture . FEMS Microbiol Lett. 1993;106(3):341–6.
[29] James EK, Reis VM, Olivares FL, Baldani JI, D?bereiner J. Infection of sugar cane by the nitrogen-fixing bacterium Acetobacter diazotrophicus. J Exp Bot. 1994;45(6):757–66.
[30] Fuentes-Ramirez LE, Jimenez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J. Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of Mexico. Plant Soil. 1993;154(2):145–50.
[31] Caballero-Mellado J, Fuentes-Ramirez LE, Reis VM, Martinez-Romero E. Genetic Structure of Acetobacter diazotrophicus Populations and Identification of a New Genetically Distant Group. Appl Environ Microbiol. 1995;61(8):3008-13.
[32] Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, Mascarua-Esparza MA, Martinez-Romero E, Caballero-Mellado J. Coffea arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Appl Environ Microbiol. 1997;63(9):3676-83.
[33] Pimentel JP, Olivares F, Pitard RM, Urquiaga S, Akiba F, D?bereiner J. Dinitrogen fixation and infection of grass leaves byPseudomonas rubrisubalbicans andHerbaspirillum seropedicae. Plant Soil. 1991;137(1):61–5.
[34] Baldani KLD, James EK, Baldani J, Dobereiner J. Colonization of rice by the nitrogen- fixing bacteria Herbaspirillum spp. and Azospirillum brasilense II New horizons in nitrogen fixation: Proc. 9th Ira. Congr. Nitrogen Fixation (6-12 December 1992, Cancun, Mexico). Eds R. Palasios, J. Mora, W. E. Newton. Dordrecht: Kluwer, 1993: 705.
[35] Baldani JI, Pot B, Kirchhof G, Falsen E, Baldani VLD, Olivares FL, et al. Emended Description of Herbaspirillum; Inccusion of [Pseudomonas] rubrisubalbicans, a Mild Plant Pathogen, as Herbaspirillum rubrisubalbicans comb. nov.; and Classification of a Group of Clinical Isolates (EF Group 1) as Herbaspirillum Species 3. Int J System Bacteriol. 1996;46(3):802–10.
[36] You C, Zhou F. Non-nodular endorhizospheric nitrogen fixation in wetland rice. Can J Microbiol. 1989;35(3):403–8.
[37] You CB, Song W, Wang HX, Li JP, Lin M, Hai WL. Association ofAlcaligenes faecalis with wetland rice. Plant Soil. 1991;137(1):81–5.
[38] Michiels K, Vanderleyden J, Van Gool A. Azospirillum — plant root associations: A review. Biol Fert Soils. 1989;8(4):356–68.
[39] Bashan Y, Levanony H, Whitmoyer RE. Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense Cd. J Gen Microbiol. 1991;137(1):187–96.
[40] Baldani VLD, de B. Alvarez MA, Baldani JI, D?bereiner J. Establishment of inoculated Azospirillum spp. in the rhizosphere and in roots of field grown wheat and sorghum. Nitrogen Fixation with Non-Legumes. 1986;35–46.
[41] Hirota Y, Fujii T, Sano Y, Iyama s. Nitrogen fixation in the rhizosphere of rice. Nature . Nature Publishing Group; 1978;276(5686):416–7.
[42] Kozyrovskaya NA, Makitruk VL, Ruckdashell E. Nitrogen-fixing Klebsiella species produce indole-3-acetic acid. Biopolym Cell. 1990;6(6):93-96.
[43] Nguen TH, Ton TB, Tarasenko VA, Kozyrovskaya NA. Enterobacteria colonization of nitrogen-fixing root tissue of rice. Molecular. and genet. mechanisms of interaction between microorganisms and plants. Pushchino, 1989;209-214.
[44] Belyavskaya NO, Kozyrovskaya NO, Kucherenko LO, Kordyum EL, Kordyum VA. Interrelations of the Klebsiella genera with the plant. I. Electron microscopic analysis of endophytic microorganisms interrelationship with rice seedling roots. Biopolym Cell. 1995; 11(1):55-60.
[45] Petak AM, Kovtunovich GL, Kozyrovskaya NA, Turyanitsa AI, Kordyum VA. Interrelations of the Klebsiella genera with the plant. 2. Localization of K. oxytoca and K. terriaena into the tobacco and wheat tissues. Biopolym Cell. 1995; 11(6):75-80.
[46] Palus JA, Borneman J, Ludden PW, Triplett EW. A diazotrophic bacterial endophyte isolated from stems of Zea mays L. and Zea luxurians Iltis and Doebley. Plant Soil. 1996;186(1):135–42.
[47] Martinez-Romero E, Oswald-Spring II, Miranda M. Towards the application of nitrogen research to forestry and agriculture . Biological fixation of nitrogen for ecology and sustainable agriculture. Eds A. Legocki, H. Bothe, A. Punier. Berlin; Heidelberg: Springer, 1997: 187-91.
[48] Hussain A, Vancura V. Formation of biologically active substances by rhizosphere bacteria and their effect on plant growth. Folia Microbiol (Praha). 1970;15(6):468-78.
[49] van Peer R, Punte HL, de Weger LA, Schippers B. Characterization of Root Surface and Endorhizosphere Pseudomonads in Relation to Their Colonization of Roots. Appl Environ Microbiol. 1990;56(8):2462-2470.
[50] Qui X, Pei Y, Wang YN, Zhang FX. Isolation Pseudomonas from cotton plants and their effect on seedling diseases. Acta phytophyl. Sin. 1990. 17: 303-306
[51] Misaghi IJ, Donndelinger CR. Endophytic bacteria in symptom-free cotton plants. Phytopathology. 1990; 80(9):808-11.
[52] Sharrock KR, Parkes SL, Jack HK, Rees-George J, Hawthorne BT. Involvement of bacterial endophytes in storage rots of buttercup squash ( Cucurbita maxima D. hybrid “Delica”). N. Z. J. Crop Hortic. Sci. 1991;19(2):157–65.
[53] Fisher PJ, Petrini O, Scott HML. The distribution of some fungal and bacterial endophytes in maize (Zea mays L.). New Phytol. 1992;122(2):299–305.
[54] Van Baren AM, Waalwijk C. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology. 1993; 83: 1406.
[55] Gardner JM, Feldman AW, Zablotowicz RM. Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol. 1982;43(6):1335-42.
[56] Gagn? S, Richard C, Rousseau H, Antoun H. Xylem-residing bacteria in alfalfa roots. Can J Microbiol. 1987;33(11):996–1000.
[57] Bell CR, Dickie GA, Harvey WLG, Chan JWYF. Endophytic bacteria in grapevine. Can J Microbiol. 1995;41(1):46–53.
[58] Mahaffee WF, Kloepper JW, van Vuurde JWL, van den Brink M. Endophytic colonization of Phaseolus vulgaris by Pseudornonas fluorescens strain 89B-27 and Enterobacter ashuriae strain jM22 II Improving pliant productivity with rhizosphere bacteria. Eds M. II. Ryder, P. M. Stephens, G. D Bowei-Glen Osmond: CSIRO Division of Soils, 1994: 180.
[59] Lamb TG, Tonkyn DW, Kluepfel DA. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol. 1996;42(11):1112–20.
[60] Benizri E, Schoeny A, Picard C, Courtade A, Guckert A. External and Internal Root Colonization of Maize by TwoPseudomonas Strains: Enumeration by Enzyme-Linked Immunosorbent Assay(ELISA). Curr Microbiol. 1997;34(5):297-302.
[61] Mahaffee WF, Kloepper JW. Bacterial communities of the rhizosphere and endorhiza associated with field-grown cucumber plants inoculated with a plant growth-promoting rhizobacterium or its genetically modified derivative. Can J Microbiol. 1997;43(4):344–53.
[62] Mahaffee WF, Bauske EM, van Vuurde JW, van der Wolf JM, van den Brink M, Kloepper JW. Comparative analysis of antibiotic resistance, immunofluorescent colony staining, and a transgenic marker (bioluminescence) for monitoring the environmental fate of rhizobacterium. Appl Environ Microbiol. 1997;63(4):1617-22.
[63] Quadt-Hallmann A, Hallmann J, Kloepper JW. Bacterial endophytes in cotton: location and interaction with other plant-associated bacteria. Can J Microbiol. 1997;43(3):254–9.
[64] Quadt-Hallmann A, Kloepper JW, Benhamou N. Bacterial endophytes in cotton: mechanisms of entering the plant. C J Microbiol. 1997;43(6):577–82.
[65] Fisher PJ, Broad SA, Clegg CD, Lappin Scott HM. Retention and spread of a genetically engineered pseudomonad in seeds and plants of Zea mays L. - a preliminary study. New Phytol. 1993;124(1):101–6.
[66] Hadar Y, Harmon GE, Taylor AG, Horton JM. Effects of Pregermination of Pea and Cucumber Seeds and of Seed Treatment with Enterobacter cloacae on Rots Caused by Pythium spp. Phytopathology. 1983. 73(9):1322-1325.
[67] Hinton DM, Bacon CW. Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia. 1995;129(2):117-25.
[68] Rattray EA, Prosser JI, Glover LA, Killham K. Characterization of rhizosphere colonization by luminescent Enterobacter cloacae at the population and single-cell levels. Appl Environ Microbiol. 1995;61(8):2950-7.
[69] Roberts DP, Marty AM, Dery PD, Hartung JS. Isolation and modulation of growth of a colonization-impaired strain of Enterobacter cloacae in cucumber spermosphere. Can J Microbiol. 1996;42(2):196-201.
[70] Quadt-Hallmann A, Kloepper JW. Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species . Can J Microbiol.1996;42(11):1144–54.
[71] Ruppel S, Hecht-Buchholz C, Remus R, Ortmann U, Schmelzer R. Settlement of the diazotrophic, phytoeffective bacterial strain Pantoea agglomerans on and within winter wheat: An investigation using ELISA and transmission electron microscopy. Plant Soil. 1992;145(2):261–73.
[72] Pleban S, Ingel F, Chet I. Control ofRhizoctonia solani andSclerotium rolfsii in the greenhouse using endophyticBacillus spp. Eur J Plant Pathol. 1995;101(6):665–72.
[73] Pleban S, Chernin L, Chet I. Chitinolytic activity of an endophytic strain of Bacillus cereus. Lett Appl Microbiol. 1997;25(4):284-8.
[74] Shishido M, Loeb BM, Chanway CP. External and internal root colonization of lodgepole pine seedlings by two growth-promoting Bacillus strains originated from different root microsites. Can J Microbiol. 1995;41(8):707–13.
[75] Kluepfel D. The Behavior and Tracking of Bacteria in the Rhizosphere. Ann Rev Phytopathol.1993;31(1):441–72.
[76] Chanway CP, Holl FB, Turkington R. Genotypic coadaptation in plant growth promotion of forage species byBacillus polymyxa. Plant Soil. 1988;106(2):281–4.
[77] Reis VM, Olivares FL, D?bereiner J. Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World J Microbiol Biotechnol. 1994;10(4):401-5.
[78] McClung CR, Patriquin DG. Isolation of a nitrogen-fixing Campylobacter species from the roots of Spartina alterniflora Loisel. Can J Microbiol. 1980;26(8):881-6.
[79] Jordan RL. Strategy and techniques for the production of monoclonal antibodies. Serological methods for detection and identification of viral and bacterial plant pathogens. A laboratory manual. Ed. R. Hampton. St. Paul: APS press, 1990
[80] Fazekas de St, Groth S. Monoclonal antibody production: principles and practice. ITandbook of monoclonal antibodies application in biology and medicine. New York: N'oyes publ. 1985: 1-10.
[81] Kozyrovska NA, Kovtunovych GL. Molecular biological methods of detection and identification of microorganisms in the environment. Biopolym Cell. 1994; 10(3-4):5-23.
[82] Hurek T, Burggraf S, Woese CR, Reinhold-Hurek B. 16S rRNA-targeted polymerase chain reaction and oligonucleotide hybridization to screen for Azoarcus spp., grass-associated diazotrophs. Appl Environ Microbiol. 1993;59(11):3816-24.
[83] Hurek T, Reinhold-Hurek B. Identification of grass-associated and toluene-degrading diazotrophs, Azoarcus spp., by analyses of partial 16S ribosomal DNA sequences. Appl Environ Microbiol. 1995;61(6):2257-61.
[84] Reingold-Hurek B, Hurek T. Interactions between diazotrophs and grasses. Biological fixation of nitrogen for ecology and sustainable agriculture. Eds A. Legocki ei al.. Berlin; Heidelberg: Springer, 1997: 317-21.
[85] Hurek T, Wagner B, Reinhold-Hurek B. Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. Appl Environ Microbiol. 1997;63(11):4331-9.
[86] Ueda T, Suga Y, Yahiro N, Matsuguchi T. Remarkable N2-fixing bacterial diversity detected in rice roots by molecular evolutionary analysis of nifH gene sequences. J Bacteriol. 1995;177(5):1414-7.
[87] Jefferson RA. The GUS reporter gene system. Nature. 1989;342(6251):837-8.
[88] Jefferson RA. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol Biol Rep. 1987;5(4):387–405.
[89] O'Callaghan A, Webster D, Batchelor C. et al. Infection of Aesbania rostrata by Azorkizobium. caullnodans ORS571 with A lacZ reporter gene. Biological fixation of nitrogen for ecology and sustainable agriculture: Abstr. book. Poznan, 1996: 89.
[90] Wilson K, Jefferson R. ^-Glucuronidase (GUS) as a marker to study plant-microbe interactions. 2nd Int. Workshop on PGPR (October 14-19). Interlaken, 1990: 69.
[91] Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression. Science. 1994;263(5148):802-5.
[92] Vanden Wymelenberg AJ, Cullen D, Spear RN, Schoenike B, Andrews JH. Expression of green fluorescent protein in Aureobasidium pullulans and quantification of the fungus on leaf surfaces. Biotechniques. 1997;23(4):686-90.
[93] Huang J. Ultrastructure of bacterial penetration in plants. Ann Rev Phytopathol. 1986;24(1):141–57.
[94] Reinhold-Hurek B, Hurek T, Claeyssens M, van Montagu M. Cloning, expression in Escherichia coli, and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol. 1993;175(21):7056-65.
[95] Starr MP, Chatterjee AK. The genus Erwinia: enterobacteria pathogenic to plants and animals. Annu Rev Microbiol. 1972;26:389-426.
[96] Walton JD. Deconstructing the Cell Wall. Plant Physiol. 1994;104(4):1113-1118.
[97] Von Riesen VL. Pectinolytic, indole-positive strains of Klebsiella pneumoniae. Int J Syst Bacteriol. 1976;26(2):143–5.
[98] Nasser W, Awad? AC, Reverchon S, Robert-Baudouy J. Pectate lyase from Bacillus subtilis: molecular characterization of the gene, and properties of the cloned enzyme. FEBS Lett. 1993;335(3):319-26.
[99] Liao CH. Analysis of pectate lyases produced by soft rot bacteria associated with spoilage of vegetables. Appl Environ Microbiol. 1989;55(7):1677-83.
[100] Fraaije BA, Bosveld M, Van den Bulk RW, Rombouts FM. Analysis of conductance responses during depolymerization of pectate by soft rot Erwinia spp. and other pectolytic bacteria isolated from potato tubers. J Appl Microbiol. 1997;83(1):17-24.
[101] Kovtunovych GL, Lar OV, Kordyum VA, Kleiner D, Kozyrovska NO. Enhancing the internal plant colonization rate with endophytic nitrogen-fixing bacteria. Biopolym. Cell. 1999; 15(4):300-5.
[102] Mei R, Chen B, Lu S, Chen Y. Field application of yield increasing bacteria (YIB). Clin J Microecol. 1990. 2: 45-49.
[103] Okon Y. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 1985;3(9):223–8.
[104] Chen Y, Mei R, Lu S. et al. The use of yield increasing bacteria (YIB) as plant growth-promoting rhizobacteria in Chinese agriculture. Managment of soilborn diseases. Ed. R. Utkheade. New Delhi: M. S Kalyani publ., 1995: 164-184.
[105] Kozyrovska N, Kovtunovych G, Gromosova E, Kuharchuk P, Kordyum V. Novel inoculants for an environmentally-friendly crop production. Resources, Conservation and Recycling. 1996;18(1-4):79–85.
[106] Fravel DR, Marois JJ, Lumsden RX, Connick WJ. Encapsulation of potential control agents in an alginate-clay matrix. Phytopathology. 1985; 75(7): 774-7.
[107] Mugnier J, Jung G. Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels. Appl Environ Microbiol. 1985;50(1):108-14.
[108] Bashan Y. Alginate beads as synthetic inoculant carriers for slow release of bacteria that affect plant growth. Appl Environ Microbiol. 1986;51(5):1089-98.
[109] Kozyrovska N, Kovtunovych G, Negrutska V et al. Microbial inoculants for a sustainable agriculture. Proc. Int. Serums «Environment protection: modern studies in ecology and microbiology. (May 13-16, 1997, Uzhgorod, Ukraine). Uzhgorod, 1997: 284-8.
[110] Fouilleux G, Revellin C, Catroux G. Short-term recovery of Bradyrhizobium japonicum during an inoculation process using mineral microgranules . Can J Microbiol. 1994;40(4):322–5.
[111] Ocumpaugh WR, Smith R. Granular inoculum enhances establishment and forage production of arrowleaf clover. J Prod. Agric. 1991; 4(2):219-24.