Biopolym. Cell. 2004; 20(5):363-379.
Огляди
Регуляторні ділянки промоторів рослин та білки — регулятори промоторної активності
1Галкін А. П., 1Льошина Л. Г., 1Медведева Т. В., 1Булко О. В., 1Кухар В. П.
  1. Інститут біоорганічної хімії та нафтохімії НАН України
    вул. Мурманська, 1, Київ, Україна, 02094

Abstract

В огляді системно проаналізовано літературні дані про струк­туру та функціональне призначення проксимально розташова­ них специфічних послідовностей ДНК (цис-елементів) у регу­ляторних областях рослинних генів і транс-факторів білкової природи. Розглянуто особливості взаємодії цис- і транс-регуляторних елементів, які детермінують видо- і органоспецифічну експресію генів, реакцію клітин на зовнішні і внут­рішні сигнали, їхню адаптацію до несприятливих факторів довкілля і захист рослин від пошкодження та хвороб.

References

[1] Spector DL. Macromolecular domains within the cell nucleus. Annu Rev Cell Biol. 1993;9:265-315.
[2] Roeder RG. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci. 1996;21(9):327-35.
[3] Muller CW. Transcription factors: global and detailed views. Curr Opin Struct Biol. 2001;11(1):26-32.
[4] Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science. 2000;290(5499):2105-10.
[5] Guilfoyle T. The structure of plant gene promoters. Genet Eng. Principles and Meth. 1997; 19:15-47.
[6] Piruzyan ES. Based on genetic engineering of plants. Moscow, Nauka. 1988; 304 p.
[7] Zawel L, Reinberg D. Common themes in assembly and function of eukaryotic transcription complexes. Annu Rev Biochem. 1995;64:533-61.
[8] Singer VL, Wobbe CR, Struhl K. A wide variety of DNA sequences can functionally replace a yeast TATA element for transcriptional activation. Genes Dev. 1990;4(4):636-45.
[9] Martinez E, Chiang CM, Ge H, Roeder RG. TATA-binding protein-associated factor(s) in TFIID function through the initiator to direct basal transcription from a TATA-less class II promoter. EMBO J. 1994;13(13):3115-26.
[10] He X, Futterer J, Hohn T. Contribution of downstream promoter elements to transcriptional regulation of the rice tungro bacilliform virus promoter. Nucleic Acids Res. 2002;30(2):497-506.
[11] Dynan WS, Sazer S, Tjian R, Schimke RT. Transcription factor Sp1 recognizes a DNA sequence in the mouse dihydrofolate reductase promoter. Nature. 1986 Jan 16-22;319(6050):246-8.
[12] Nielsen SJ, Praestegaard M, Jorgensen HF, Clark BF. Different Sp1 family members differentially affect transcription from the human elongation factor 1 A-1 gene promoter. Biochem J. 1998;333 ( Pt 3):511-7.
[13] Gelinas R, Endlich B, Pfeiffer C, Yagi M, Stamatoyannopoulos G. G to A substitution in the distal CCAAT box of the A gamma-globin gene in Greek hereditary persistence of fetal haemoglobin. Nature. 1985 Jan 24-30;313(6000):323-5.
[14] Rieping M, Schoffl F. Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet. 1992;231(2):226-32.
[15] Katagiri F, Chua NH. Plant transcription factors: present knowledge and future challenges. Trends Genet. 1992;8(1):22-7.
[16] Klimov VV. Photosynthesis and the Biosphere. Sorosovskiy obrazovatel'nyy zhurnal. 1996; 8:6-13.
[17] Fankhauser C, Chory J. Light control of plant development. Annu Rev Cell Dev Biol. 1997;13:203-29.
[18] Kuno N, Furuya M. Phytochrome regulation of nuclear gene expression in plants. Semin Cell Dev Biol. 2000;11(6):485-93.
[19] Giuliano G, Pichersky E, Malik VS, Timko MP, Scolnik PA, Cashmore AR. An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc Natl Acad Sci U S A. 1988;85(19):7089-93.
[20] Kuhlemeier C, Cuozzo M, Green PJ, Goyvaerts E, Ward K, Chua NH. Localization and conditional redundancy of regulatory elements in rbcS-3A, a pea gene encoding the small subunit of ribulose-bisphosphate carboxylase. Proc Natl Acad Sci U S A. 1988;85(13):4662-6.
[21] Arguello-Astorga GR, Herrera-Estrella LR. Ancestral multipartite units in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol. 1996;112(3):1151-66.
[22] Ueda T, Pichersky E, Malik VS, Cashmore AR. Level of expression of the tomato rbcS-3A gene is modulated by a far upstream promoter element in a developmentally regulated manner. Plant Cell. 1989;1(2):217-27.
[23] Ljoshina L. G., Medvedeva T. V., Bulko O. V., Galkln A. P., Kukhar V. P. Organ-specific and light-inducible expression of genes in transgenic plants: receiving and cloning root-, tuber- and leaf-specific promoters. Biopolym. Cell. 2003; 19(2):169-178
[24] Gilmartin PM, Sarokin L, Memelink J, Chua NH. Molecular light switches for plant genes. Plant Cell. 1990;2(5):369-78.
[25] Puente P, Wei N, Deng XW. Combinatorial interplay of promoter elements constitutes the minimal determinants for light and developmental control of gene expression in Arabidopsis. EMBO J. 1996;15(14):3732-43.
[26] Chattopadhyay S, Puente P, Deng XW, Wei N. Combinatorial interaction of light-responsive elements plays a critical role in determining the response characteristics of light-regulated promoters in Arabidopsis. Plant J. 1998;15(1):69-77.
[27] Gilmartin PM, Memelink J, Hiratsuka K, Kay SA, Chua NH. Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element. Plant Cell. 1992;4(7):839-49.
[28] Zhou DX. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. Trends Plant Sci. 1999;4(6):210-214.
[29] Chattopadhyay S, Ang LH, Puente P, Deng XW, Wei N. Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell. 1998;10(5):673-83.
[30] Martinez-Hernadez A, Lopez-Ochoa L, Argu?ello-Astorga G, Herrera-Estrella L. Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals. Plant Physiol. 2002;128(4):1223-33.
[31] Abel S, Ballas N, Wong LM, Theologis A. DNA elements responsive to auxin. Bioessays. 1996;18(8):647-54.
[32] Guilfoyle T, Hagen G, Ulmasov T, Murfett J. How does auxin turn on genes? Plant Physiol. 1998;118(2):341-7.
[33] Hagen G, Guilfoyle T. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol. 2002;49(3-4):373-85.
[34] Ballas N, Wong LM, Ke M, Theologis A. Two auxin-responsive domains interact positively to induce expression of the early indoleacetic acid-inducible gene PS-IAA4/5. Proc Natl Acad Sci U S A. 1995;92(8):3483-7.
[35] Liu ZB, Ulmasov T, Shi X, Hagen G, Guilfoyle TJ. Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell. 1994;6(5):645-57.
[36] Xu N., Hagen G., Guilfoyle T. Multiple auxin response modules in the soybean SAUR 15A promoter. Plant Science; 1997; 126 (2):193-201.
[37] Ulmasov T, Liu ZB, Hagen G, Guilfoyle TJ. Composite structure of auxin response elements. Plant Cell. 1995;7(10):1611-23.
[38] Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 1997;9(11):1963-71.
[39] Liscum E, Reed JW. Genetics of Aux/IAA and ARF action in plant growth and development. Plant Mol Biol. 2002;49(3-4):387-400.
[40] Ulmasov T, Hagen G, Guilfoyle TJ. ARF1, a transcription factor that binds to auxin response elements. Science. 1997;276(5320):1865-8.
[41] Ellis JG, Tokuhisa JG, Llewellyn DJ, Bouchez D, Singh K, Dennis ES, Peacock WJ. Does the ocs-element occur as a functional component of the promoters of plant genes? Plant J. 1993;4(3):433-43.
[42] Krawczyk S, Thurow C, Niggeweg R, Gatz C. Analysis of the spacing between the two palindromes of activation sequence-1 with respect to binding to different TGA factors and transcriptional activation potential. Nucleic Acids Res. 2002;30(3):775-81.
[43] Skriver K, Olsen FL, Rogers JC, Mundy J. cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci U S A. 1991;88(16):7266-70.
[44] Cercos M, Gomez-Cadenas A, Ho TH. Hormonal regulation of a cysteine proteinase gene, EPB-1, in barley aleurone layers: cis- and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant J. 1999;19(2):107-118.
[45] Gubler F, Kalla R, Roberts JK, Jacobsen JV. Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell. 1995;7(11):1879-91.
[46] Tang Z, Sadka A, Morishige DT, Mullet JE. Homeodomain leucine zipper proteins bind to the phosphate response domain of the soybean VspB tripartite promoter. Plant Physiol. 2001;125(2):797-809.
[47] Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell. 1994;6(11):1567-82.
[48] Hattori T, Terada T, Hamasuna S. Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J. 1995;7(6):913-25.
[49] Busk PK, Pages M. Regulation of abscisic acid-induced transcription. Plant Mol Biol. 1998;37(3):425-35.
[50] Shen Q, Zhang P, Ho TH. Modular nature of abscisic acid (ABA) response complexes: composite promoter units that are necessary and sufficient for ABA induction of gene expression in barley. Plant Cell. 1996;8(7):1107-19.
[51] Nakagawa H, Ohmiya K, Hattori T. A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. Plant J. 1996;9(2):217-27.
[52] Marcotte WR Jr, Russell SH, Quatrano RS. Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell. 1989;1(10):969-76.
[53] McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell. 1991;66(5):895-905.
[54] Bleecker AB, Kende H. Ethylene: a gaseous signal molecule in plants. Annu Rev Cell Dev Biol. 2000;16:1-18.
[55] Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995;7(2):173-82.
[56] Wang KL, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14 Suppl:S131-51.
[57] Deikman J. Molecular mechanisms of ethylene regulation of gene transcription. Physiologia Plantarum. 1997; 100 (3):561-566.
[58] Ohta M, Ohme-Takagi M, Shinshi H. Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J. 2000;22(1):29-38.
[59] Wu K, Tian L, Hollingworth J, Brown DC, Miki B. Functional analysis of tomato Pti4 in Arabidopsis. Plant Physiol. 2002;128(1):30-7.
[60] Xu R, Goldman S, Coupe S, Deikman J. Ethylene control of E4 transcription during tomato fruit ripening involves two cooperative cis elements. Plant Mol Biol. 1996;31(6):1117-27.
[61] Coupe SA, Deikman J. Characterization of a DNA-binding protein that interacts with 5' flanking regions of two fruit-ripening genes. Plant J. 1997;11(6):1207-18.
[62] Rieu I, Mariani C, Weterings K. Expression analysis of five tobacco EIN3 family members in relation to tissue-specific ethylene responses. J Exp Bot. 2003;54(391):2239-44.
[63] Gazzarrini S, McCourt P. Genetic interactions between ABA, ethylene and sugar signaling pathways. Curr Opin Plant Biol. 2001;4(5):387-91.
[64] Sheen J, Zhou L, Jang JC. Sugars as signaling molecules. Curr Opin Plant Biol. 1999;2(5):410-8.
[65] Lu CA, Lim EK, Yu SM. Sugar response sequence in the promoter of a rice alpha-amylase gene serves as a transcriptional enhancer. J Biol Chem. 1998;273(17):10120-31.
[66] Lu CA, Ho TH, Ho SL, Yu SM. Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-amylase gene expression. Plant Cell. 2002;14(8):1963-80.
[67] Maeo K, Tomiya T, Hayashi K, Akaike M, Morikami A, Ishiguro S, Nakamura K. Sugar-responsible elements in the promoter of a gene for beta-amylase of sweet potato. Plant Mol Biol. 2001;46(5):627-37.
[68] Sun C, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell. 2003;15(9):2076-92.
[69] Grierson C, Du JS, de Torres Zabala M, Beggs K, Smith C, Holdsworth M, Bevan M. Separate cis sequences and trans factors direct metabolic and developmental regulation of a potato tuber storage protein gene. Plant J. 1994;5(6):815-26.
[70] Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5' upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Mol Gen Genet. 1994;244(6):563-71.
[71] Kim DJ, Smith SM, Leaver CJ. A cDNA encoding a putative SPF1-type DNA-binding protein from cucumber. Gene. 1997;185(2):265-9.
[72] Rushton PJ, Macdonald H, Huttly AK, Lazarus CM, Hooley R. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol. 1995;29(4):691-702.
[73] Pla M, Vilardell J, Guiltinan MJ, Marcotte WR, Niogret MF, Quatrano RS, Pages M. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28. Plant Mol Biol. 1993;21(2):259-66.
[74] Ohto MA, Nakamura-Kito K, Nakamura K. Induction of Expression of Genes Coding for Sporamin and beta-Amylase by Polygalacturonic Acid in Leaf-Petiole Cuttings of Sweet Potato. Plant Physiol. 1992;99(2):422-7.
[75] Bustos MM1, Iyer M, Gagliardi SJ. Induction of a beta-phaseolin promoter by exogenous abscisic acid in tobacco: developmental regulation and modulation by external sucrose and Ca2+ ions. Plant Mol Biol. 1998;37(2):265-74.
[76] Creelman RA1, Mullet JE. Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:355-381.
[77] Blechert S, Brodschelm W, H?lder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ, Zenk MH. The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci U S A. 1995;92(10):4099-105.
[78] Xu Y, Chang P, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell. 1994;6(8):1077-1085.
[79] Brown RL, Kazan K, McGrath KC, Maclean DJ, Manners JM. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis. Plant Physiol. 2003;132(2):1020-32.
[80] Mason HS, DeWald DB, Mullet JE. Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell. 1993;5(3):241-51.
[81] Rouster J, Leah R, Mundy J, Cameron-Mills V. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 1997;11(3):513-23.
[82] Kim SR, Choi JL, Costa MA, An G. Identification of G-Box sequence as an essential element for methyl jasmonate response of potato proteinase inhibitor II promoter. Plant Physiol. 1992;99(2):627-31.
[83] Xiang C, Miao ZH, Lam E. Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Mol Biol. 1996;32(3):415-26.
[84] Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A. 2000;97(21):11655-60.
[85] Penninckx IA, Thomma BP, Buchala A, M?traux JP, Broekaert WF. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell. 1998;10(12):2103-13.
[86] Rushton PJ, Somssich IE. Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol. 1998;1(4):311-5.
[87] Ohme-Takagi M, Suzuki K, Shinshi H. Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol. 2000;41(11):1187-92.
[88] Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci. 2000;5(5):199-206.
[89] Kirsch C, Takamiya-Wik M, Schmelzer E, Hahlbrock K, Somssich IE. A novel regulatory element involved in rapid activation of parsley ELI7 gene family members by fungal elicitor or pathogen infection. Mol Plant Pathol. 2000;1(4):243-51.
[90] Rolland F, Moore B, Sheen J. Sugar sensing and signaling in plants. Plant Cell. 2002;14 Suppl:S185-205.
[91] Hara K, Yagi M, Kusano T, Sano H. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Mol Gen Genet. 2000;263(1):30-7.
[92] Campbell EJ, Schenk PM, Kazan K, Penninckx IA, Anderson JP, Maclean DJ, Cammue BP, Ebert PR, Manners JM. Pathogen-responsive expression of a putative ATP-binding cassette transporter gene conferring resistance to the diterpenoid sclareol is regulated by multiple defense signaling pathways in Arabidopsis. Plant Physiol. 2003;133(3):1272-84.
[93] Morimoto RI. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 1998;12(24):3788-96.
[94] Nover L, Scharf KD. Heat stress proteins and transcription factors. Cell Mol Life Sci. 1997;53(1):80-103.
[95] Scharf KD, Rose S, Zott W, Schoffl F, Nover L. Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J. 1990;9(13):4495-501.
[96] Schoffl F, Rieping M, Baumann G, Bevan M, Angermuller S. The function of plant heat shock promoter elements in the regulated expression of chimaeric genes in transgenic tobacco. Mol Gen Genet. 1989;217(2-3):246-53.
[97] Schoffl F, Prandl R, Reindl A. Regulation of the heat-shock response. Plant Physiol. 1998;117(4):1135-41.
[98] Mittler R, Zilinskas BA. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. J Biol Chem. 1992;267(30):21802-7.
[99] Kubo A, Saji H, Tanaka K, Kondo N. Genomic DNA structure of a gene encoding cytosolic ascorbate peroxidase from Arabidopsis thaliana. FEBS Lett. 1993;315(3):313-7.
[100] Storozhenko S, De Pauw P, Van Montagu M, Inze D, Kushnir S. The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiol. 1998;118(3):1005-14.
[101] Rieping M, Schoffl F. Synergistic effect of upstream sequences, CCAAT box elements, and HSE sequences for enhanced expression of chimaeric heat shock genes in transgenic tobacco. Mol Gen Genet. 1992;231(2):226-32.
[102] Czarnecka E, Key JL, Gurley WB. Regulatory domains of the Gmhsp17.5-E heat shock promoter of soybean. Mol Cell Biol. 1989;9(8):3457-63.
[103] Sch?ffl F, Schroder G, Kliem M, Rieping M. An SAR sequence containing 395 bp DNA fragment mediates enhanced, gene-dosage-correlated expression of a chimaeric heat shock gene in transgenic tobacco plants. Transgenic Res. 1993;2(2):93-100.
[104] Tsukiyama T, Becker PB, Wu C. ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature. 1994;367(6463):525-32.
[105] Neill S, Desikan R, Hancock J. Hydrogen peroxide signalling. Curr Opin Plant Biol. 2002;5(5):388-95.
[106] Baxter-Burrell A, Yang Z, Springer PS, Bailey-Serres J. RopGAP4-dependent Rop GTPase rheostat control of Arabidopsis oxygen deprivation tolerance. Science. 2002;296(5575):2026-8.
[107] Vranova E, Inze D, Van Breusegem F. Signal transduction during oxidative stress. J Exp Bot. 2002;53(372):1227-36.
[108] Larkindale J, Knight MR. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 2002;128(2):682-95.
[109] Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell. 1994;6(2):251-64.
[110] Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci U S A. 1997;94(3):1035-40.
[111] Jiang C, Iu B, Singh J. Requirement of a CCGAC cis-acting element for cold induction of the BN115 gene from winter Brassica napus. Plant Mol Biol. 1996;30(3):679-84.
[112] Pla M, Vilardell J, Guiltinan MJ, Marcotte WR, Niogret MF, Quatrano RS, Pages M. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28. Plant Mol Biol. 1993;21(2):259-66.
[113] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol. 2000;3(3):217-23.
[114] Dolferus R, Jacobs M, Peacock WJ, Dennis ES. Differential interactions of promoter elements in stress responses of the Arabidopsis Adh gene. Plant Physiol. 1994;105(4):1075-87.
[115] Dolferus R, Klok EJ, Ismond K, Delessert C, Wilson S, Good A, Peacock J, Dennis L. Molecular basis of the anaerobic response in plants. IUBMB Life. 2001;51(2):79-82.
[116] Olive MR, Walker JC, Singh K, Dennis ES, Peacock WJ. Functional properties of the anaerobic responsive element of the maize Adh1 gene. Plant Mol Biol. 1990;15(4):593-604.
[117] Hoeren FU, Dolferus R, Wu Y, Peacock WJ, Dennis ES. Evidence for a role for AtMYB2 in the induction of the Arabidopsis alcohol dehydrogenase gene (ADH1) by low oxygen. Genetics. 1998;149(2):479-90.
[118] Okamuro JK, den Boer BG, Jofuku KD. Regulation of Arabidopsis flower development. Plant Cell. 1993;5(10):1183-93.
[119] Riechmann JL, Krizek BA, Meyerowitz EM. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc Natl Acad Sci U S A. 1996;93(10):4793-8.
[120] Bevan M, Colot V, Hammond-Kosack M, Holdsworth M, Torres de Zabala M, Smith C, Grierson C, Beggs K. Transcriptional control of plant storage protein genes. Philos Trans R Soc Lond B Biol Sci. 1993;342(1301):209-15.
[121] Thomas TL. Gene expression during plant embryogenesis and germination: an overview. Plant Cell. 1993;5(10):1401-10.
[122] McCarty D.R. Genetic control and integration of maturation and germination pathways in seed development. Annual Review of Plant Physiology and Plant Molecular Biology, 1995; 46(1):71-93.
[123] Waddell D.R., Saalbach I., Pickardt T., McHemehl F., Hillmer S., Schieder O., Muntz K. Seed-specific expression of the sulfur-rich Brazil nut 2S albumin in transgenic Vicia narbonensis plants. J. Cell. Biochem. 1994; 18:108-110.
[124] Dickinson CD, Evans RP, Nielsen NC. RY repeats are conserved in the 5'-flanking regions of legume seed-protein genes. Nucleic Acids Res. 1988;16(1):371.
[125] Lelievre JM, Oliveira LO, Nielsen NC. 5'CATGCAT-3' Elements Modulate the Expression of Glycinin Genes. Plant Physiol. 1992;98(1):387-91.
[126] Ezcurra I, Wycliffe P, Nehlin L, Ellerstr?m M, Rask L. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J. 2000;24(1):57-66.
[127] Reidt W, Wohlfarth T, Ellerstrom M, Czihal A, Tewes A, Ezcurra I, Rask L, Baumlein H. Gene regulation during late embryogenesis: the RY motif of maturation-specific gene promoters is a direct target of the FUS3 gene product. Plant J. 2000;21(5):401-8.
[128] Washida H, Wu CY, Suzuki A, Yamanouchi U, Akihama T, Harada K, Takaiwa F. Identification of cis-regulatory elements required for endosperm expression of the rice storage protein glutelin gene GluB-1. Plant Mol Biol. 1999;40(1):1-12.
[129] Thompson GA, Larkins BA. Structural elements regulating zein gene expression. Bioessays. 1989;10(4):108-13.
[130] Suzuki A, Wu CY, Washida H, Takaiwa F. Rice MYB protein OSMYB5 specifically binds to the AACA motif conserved among promoters of genes for storage protein glutelin. Plant Cell Physiol. 1998;39(5):555-9.
[131] Vicente-Carbajosa J, Moose SP, Parsons RL, Schmidt RJ. A maize zinc-finger protein binds the prolamin box in zein gene promoters and interacts with the basic leucine zipper transcriptional activator Opaque2. Proc Natl Acad Sci U S A. 1997;94(14):7685-90.
[132] Albani D, Hammond-Kosack MC, Smith C, Conlan S, Colot V, Holdsworth M, Bevan MW. The wheat transcriptional activator SPA: a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes. Plant Cell. 1997;9(2):171-84.
[133] Wu CY, Suzuki A, Washida H, Takaiwa F. The GCN4 motif in a rice glutelin gene is essential for endosperm-specific gene expression and is activated by Opaque-2 in transgenic rice plants. Plant J. 1998;14(6):673-83.
[134] Wu C, Washida H, Onodera Y, Harada K, Takaiwa F. Quantitative nature of the Prolamin-box, ACGT and AACA motifs in a rice glutelin gene promoter: minimal cis-element requirements for endosperm-specific gene expression. Plant J. 2000;23(3):415-21.
[135] Giovannoni J. Molecular biology of fruit maturation and ripening.Annu Rev Plant Physiol Plant Mol Biol. 2001;52:725-749.
[136] Nicholass FJ, Smith CJ, Schuch W, Bird CR, Grierson D. High levels of ripening-specific reporter gene expression directed by tomato fruit polygalacturonase gene-flanking regions. Plant Mol Biol. 1995;28(3):423-35.
[137] Yamagata H, Yonesu K, Hirata A, Aizono Y. TGTCACA motif is a novel cis-regulatory enhancer element involved in fruit-specific expression of the cucumisin gene. J Biol Chem. 2002;277(13):11582-90.
[138] Bastola DR, Pethe VV, Winicov I. Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoter elements in the salt-inducible MsPRP2 gene. Plant Mol Biol. 1998;38(6):1123-35.
[139] Liu JJ, Ekramoddoullah AK. Root-specific expression of a western white pine PR10 gene is mediated by different promoter regions in transgenic tobacco. Plant Mol Biol. 2003;52(1):103-20.
[140] Verdaguer B, de Kochko A, Fux CI, Beachy RN, Fauquet C. Functional organization of the cassava vein mosaic virus (CsVMV) promoter. Plant Mol Biol. 1998;37(6):1055-67.
[141] Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A. 1989;86(20):7890-4.
[142] Eyal Y, Curie C, McCormick S. Pollen specificity elements reside in 30 bp of the proximal promoters of two pollen-expressed genes. Plant Cell. 1995;7(3):373-84.
[143] Bate N, Twell D. Functional architecture of a late pollen promoter: pollen-specific transcription is developmentally regulated by multiple stage-specific and co-dependent activator elements. Plant Mol Biol. 1998;37(5):859-69.
[144] Kobayashi A, Sakamoto A, Kubo K, Rybka Z, Kanno Y, Takatsuji H. Seven zinc-finger transcription factors are expressed sequentially during the development of anthers in petunia. Plant J. 1998;13(4):571-6.
[145] Georgiev GP. Genes in higher organisms and their expression. Moscow, Nauka, 1989. 254 p.
[146] Glazko VI, Glazko GV. Introduction to genetics. Bioinformatics, DNA tehnologniya, gene therapy, proteomics, metabolites. Kiev, KVSCH 2003; 639 p.