Biopolym. Cell. 2010; 26(6):461-471.
Огляди
Деякі аспекти репарації і редагування РНК
1Ковальчук М. В.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Молекули РНК у клітинах пошкоджуються так само, як і молекули ДНК, а інколи й набагато масштабніше. У представленому огляді розглянуто агенти, які пошкоджують РНК, та деякі аспекти репарації і редагування РНК, а також їхні відмінності від механізмів репарації ДНК.
Keywords: РНК, репарація, корекція, AlkB

References

[1] Lindahl T. Instability and decay of the primary structure of DNA Nature 1993 362, N 6422:709–715.
[2] Shan X., Chang Y., Lin C. L. Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression FASEB J 2007 21, N 11:2753–2764.
[3] Baltimore D. Our genome unveiled Nature 2001 409, N 6822:814–816.
[4] Castellani R. J., Nunomura A., Rolston R. K., Moreira P. I., Takeda A., Perry G., Smith M. A. Sublethal RNA oxidation as a mechanism for neurodegenerative disease Int. J. Mol. Sci 2008 9, N 5:789–806.
[5] Hoeijmakers J. H. Genome maintenance mechanisms for preventing cancer Nature 2001 411, N 6835:366–374.
[6] Wurtmann E. J., Wolin S. L. RNA under attack: cellular handling of RNA damage Crit. Rev. Biochem. Mol. Biol 2009 44, N 1:34–49.
[7] Frederico L. A., Kunkel T. A., Shaw B. R. A sensitive genetic assay for the detection of cytosine deamination: determination of rate constants and the activation energy Biochemistry 1990 29, N 10:2532–2537.
[8] Thompson D. M., Lu C., Green P. J., Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes RNA 2008 14, N 10:2095–2103.
[9] Kong Q., Shan X., Chang Y., Tashiro H., Glenn Lin C. RNA oxidation: a contributing factor or an epiphenomenon in the process of neurodegeneration Free Radic. Res 2008 42, N 9:773–777.
[10] Demple B., Harrison L. Repair of oxidative damage to DNA: enzymology and biology Annu. Rev. Biochem 1994 63:915–948.
[11] Wamer W. G., Wei R. R. In vitro photooxidation of nucleic acids by ultraviolet A radiation Photochem. Photobiol 1997 65, N 3:560–563.
[12] Hofer T., Badouard C., Bajak E., Ravanat J. L., Mattsson C., Cotgreave I. A. Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA Biol. Chem 2005 386, N 4:333–337.
[13] Shan X., Lin C. L. Quantification of oxidized RNAs in Alzheimer's disease Neurobiol. Aging 2006 27, N 5:657– 662.
[14] Nunomura A., Hofer T., Moreira P. I., Castellani R. J., Smith M. A., Perry G. RNA oxidation in Alzheimer disease and related neurodegenerative disorders Acta Neuropathol 2009 118, N 1:151–166.
[15] Ougland R., Zhang C. M., Liiv A., Johansen R. F., Seeberg E., Hou Y. M., Remme J., Falnes P. O. AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation Mol. Cell 2004 16, N 1:107–116.
[16] O'Connor M., Dahlberg A. E. Mutations at U2555, a tRNAprotected base in 23S rRNA, affect translational fidelity Proc. Natl Acad. Sci. USA 1993 90, N 19:9214–9218.
[17] Bellacosa A., Moss E. G. RNA repair: damage control. Curr Biol. 2003;13(12):R482-4.
[18] Nunomura A., Perry G., Pappolla M. A., Wade R., Hirai K., Chiba S., Smith M. A. RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer's disease J. Neurosci 1999 19, N 6:1959–1964.
[19] Slupphaug G., Kavli B., Krokan H. E. The interacting pathways for prevention and repair of oxidative DNA damage Mutat. Res 2003 531, N 1–2:231–251.
[20] Taddei F., Hayakawa H., Bouton M., Cirinesi A., Matic I., Sekiguchi M., Radman M. Counteraction by MutT protein of transcriptional errors caused by oxidative damage Science 1997 278, N 5335:128–130.
[21] Hayakawa H., Kuwano M., Sekiguchi M. Specific binding of 8-oxoguanine-containing RNA to polynucleotide phosphorylase protein Biochemistry 2001 40, N 33:9977–9982.
[22] Carpousis A. J. The RNA degradosome of Escherichia coli: an mRNA-degrading machine assembled on RNase E Annu. Rev. Microbiol 2007 –61:71–87.
[23] Hayakawa H., Uchiumi T., Fukuda T., Ashizuka M., Kohno K., Kuwano M., Sekiguchi M. Binding capacity of human YB1 protein for RNA containing 8-oxoguanine Biochemistry 2002 41, N 42:12739–12744.
[24] Brregeon D., Sarasin A. Hypothetical role of RNA damage avoidance in preventing human disease Mutat. Res 2005 577, N 1–2:293–302.
[25] Sedgwick B., Lindahl T. Recent progress on the Ada response for inducible repair of DNA alkylation damage Oncogene 2002 21, N 58:8886–8894.
[26] Falnes P. O., Bjoras M., Aas P. A., Sundheim O., Seeberg E. Substrate specificities of bacterial and human AlkB proteins Nucl. Acids Res 2004 32, N 11:3456–3461.
[27] Falnes P. O., Klungland A., Alseth I. Repair of methyl lesions in DNA and RNA by oxidative demethylation Neuroscience 2007 145, N 4:1222–1232.
[28] Kataoka H., Yamamoto Y., Sekiguchi M. A new gene (alkB) of Escherichia coli that controls sensitivity to methyl methane sulfonate. J. Bacteriol. 1983; 153(3):1301–1307.
[29] Kondo H., Nakabeppu Y., Kataoka H., Kuhara S., Kawabata S., Sekiguchi M. Structure and expression of the alkB gene of Escherichia coli related to the repair of alkylated DNA. J. Biol. Chem. 1986; 261(33):15772–15777.
[30] Chen B. J., Carroll P., L. Samson L. The Escherichia coli AlkB protein protects human cells against alkylation-induced toxicity. J. Bacteriol. 1994; 176(20):6255–6261.
[31] Wei Y. F., Carter K. C., Wang R. P., Shell B. K. Molecular cloning and functional analysis of a human cDNA encoding an Escherichia coli AlkB homolog, a protein involved in DNA alkylation damage repair. Nucleic Acids Res. 1996;24(5):931-37.
[32] Dinglay S., Trewick S. C., Lindahl T., Sedgwick B. Defective processing of methylated single-stranded DNA by E. coli AlkB mutants. Genes Dev. 2000; 14(16):2097–2105.
[33] Aravind L., Koonin E. V. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarateand iron-dependent dioxygenases. Genome Biol. 2001; 2(3):R0007.1–R0007.8.
[34] Falnes P. O., Johansen R. F., Seeberg E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli Nature 2002 419, N 6903:178–182.
[35] Trewick S. C., Henshaw T. F., Hausinger R. P., Lindahl T., Sedgwick B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage Nature 2002 419, N 6903:174–178.
[36] Gerken T., Girard C. A., Tung Y. L., Webby C. J., Saudek V., Hewitson K. S., Yeo G. S., McDonough M. A., Cunliffe S., McNeill L. A., Galvanovskis J., Rorsman P., Robins P., Prieur X., Coll A. P., Ma M., Jovanovic Z., Farooqi I. S., Sedgwick B., Barroso I., Lindahl T., Ponting C. P., Ashcroft F. M., O'Rahilly S., Schofield C. J. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase Science 2007 318, N 5855:1469–1472.
[37] Sanchez-Pulido L., Andrade-Navarro M. A. The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily BMC Biochem 2007 8:23–28.
[38] Jia G., Yang C.-G., Yang S., Jian X., Yi C., Zhou Z., He C. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO FEBS Lett 2008 582, N 23–24:3313–3319.
[39] Martelli G. P., Adams M. J., Kreuze J. F., Dolja V. V. Family Flexiviridae: a case study in virion and genome plasticity Annu. Rev. Phytopathol 2007 45:73–100.
[40] Yu B., Edstrom W. C., Benach J., Hamuro Y., Weber P. C., Gibney B. R., Hunt J. F. Crystal structures of catalytic complexes of the oxidative DNA/RNA repair enzyme AlkB Nature 2006 439, N 7078:879–884.
[41] van den Born E., Omelchenko M. V., Bekkelund A., Leihne V., Koonin E. V., Dolja V. V., Falnes P. O. Viral AlkB proteins repair RNA damage by oxidative demethylation Nucl. Acids Res 2008, 36, N 17:5451–5461.
[42] Amitsur M., Levitz R., Kaufman G. Bacteriophage T4 anticodon nuclease, polynucleotide kinase, and RNA ligase reprocess the host lysine tRNA. EMBO J. 1987; 6(8):2499–2503.
[43] Wang L. K., Lima C. D., Shuman S. Structure and mechanism of T4 polynucleotide kinase: an RNA repair enzyme EMBO. J 2002 21, N 14:3873–3880.
[44] Schwer B., Aronova A., Ramirez A., Braun P., Shuman S. Mammalian 2',3' cyclic nucleotide phosphodiesterase (CNP) can function as a tRNA splicing enzyme in vivo RNA 2008 14, N 2:204–210.
[45] Keppetipola N., Nandakumar J., Shuman S. Reprogramming the tRNA-splicing activity of a bacterial RNA repair enzyme Nucl. Acids Res 2007 35, N 11:3624–3630.
[46] Xue S., Calvin K., Li H. RNA recognition and cleavage by a splicing endonuclease Science 2006 312, N 5775 P. 906–910.
[47] Chan C. M., Zhou C., Huang R. H. Reconstituting bacterial RNA repair and modification in vitro Science 2009 326, N 5950:247.
[48] Jain R., Shuman S. Bacterial Hen1 is a 3' terminal RNA ribose 2'-O-methyltransferase component of a bacterial RNA repair cassette RNA 2010 16, N 2:316–323.
[49] Wilusz C. J., Wang W., Peltz S. W. Curbing the nonsense: the activation and regulation of mRNA surveillance Genes Dev 2001 15, N 21:2781–2785.
[50] Vasudevan S., Peltz S. W., Wilusz C. J. Non-stop decay – a new mRNA surveillance pathway Bioessays 2002 24, N 9:785–788.
[51] Skovgaard M., Jensen L. J., Brunak S., Ussery D., Krogh A. On the total number of genes and their length distribution in complete microbial genomes Trends Genet 2001 17, N 8:425–428.
[52] Blattner F. R., Plunkett G. 3rd, Bloch C. A., Perna N. T., Burland V., Riley M., Collado-Vides J., Glasner J. D., Rode C. K., Mayhew G. F., Gregor J., Davis N. W., Kirkpatrick H. A., Goeden M. A., Rose D. J., Mau B., Shao Y. The complete genome sequence of Escherichia coli K-12 Science 1997 277, N 5331:1453–1462.
[53] Labeit S., Kolmerer B. Titins: giant proteins in charge of muscle ultrastructure and elasticity Science 1995 270, N 5234:293–296.
[54] Thomas M. J., Platas A. A., Hawley D. K. Transcriptional fidelity and proofreading by RNA polymerase II Cell 1998 93, N 4:627–637.
[55] Reichert A. S., Morl M. Repair of tRNAs in metazoan mitochondria Nucl. Acids Res 2000 28, N 10:2043–2048.
[56] Joyce C. M., Steitz T. A. Function and structure relationships in DNA polymerases Annu. Rev. Biochem 1994 63 P. 777–822.
[57] Erie D. A., Hajiseyedjavadi O., Young M. C., von Hippel P. H. Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription Science 1993 262, N 5135:867–873.
[58] Lange U., Hausner W. Transcriptional fidelity and proofreading in Archaea and implications for the mechanism of TFSinduced RNA cleavage Mol. Microbiol 2004 52, N 4 P. 1133–1143.
[59] Koyama H., Ito T., Nakanishi T., Sekimizu K. Stimulation of RNA polymerase II transcript cleavage activity contributes to maintain transcriptional fidelity in yeast Genes Cells 2007 12, N 5:547–559.
[60] Fish R. N., Kane C. M. Promoting elongation with transcript cleavage stimulatory factors Biochim. Biophys. Acta 2002 1577, N 2:287–307.
[61] Wind M., Reines D. Transcription elongation factor SII Bioessays 2000 22, N 4:327–336.
[62] Isken O., Maquat L. E. Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function Genes Dev 2007 21, N 15:1833–1856.
[63] Tomita K., Ueda T., Watanabe K. RNA editing in the acceptor stem of squid mitochondrial tRNA(Tyr) Nucl. Acids Res 1996 24, N 24:4987–4991.
[64] Lavrov D. V., Brown W. M., Boore J. L. A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus Proc. Natl Acad. Sci. USA 2000 97, N 25:13738–13742.
[65] Gray M. W., Burger G., Lang B. F. Mitochondrial evolution Science 1999 283, N 5407:1476–1481.
[66] Ross J. mRNA stability in mammalian cells. Microbiol. Rev. 1995; 59(3):423–450.
[67] Jacobson A., Peltz S. W. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells Annu. Rev. Biochem 1996 65:693–739.
[68] Friedel C. C., Dolken L., Ruzsics Z., Koszinowski U. H., Zimmer R. Conserved principles of mammalian transcriptional regulation revealed by RNA half-life Nucl. Acids Res 2009 37, N 17 e115.
[69] Morales J., Russell J. E., Liebhaber S. A. Destabilization of human -globin mRNA by translation anti-termination is controlled during erythroid differentiation and is paralleled by phased shortening of the Poly(A) tail J. Biol. Chem 1997 272, N 10:6607–6613.
[70] Weiss I. M., Liebhaber S. A. Erythroid cell-specific mRNA stability elements in the 2-globin 3' nontranslated region Mol. Cell. Biol 1995 15, N 5:2457–2465.
[71] Waggoner S. A., Liebhaber S. A. Regulation of -globin mRNA stability. Exp. Biol. Med. 2003; 228(4):387–395.
[72] Poole A. M., Logan D. T. Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol. Biol. Evol. 2005; 22(6):1444–1455.
[73] Saikia M., Dai Q., Decatur W. A., Fournier M. J., Piccirilli J. A., Pan T. A systematic, ligation-based approach to study RNA modifications RNA 2006 12, N 11:2025–2033.
[74] Namy O., Rousset J. P., Napthine S., Brierley I. Reprogrammed genetic decoding in cellular gene expression Mol. Cell 2004 13, N 2:157–168.
[75] Argis P. F. Decoding the genome: a modified view Nucl. Acids Res 2004 32, N 1:223–238.