Biopolym. Cell. 2012; 28(5):329-337.
Огляди
Стовбурові клітини і генетичні захворювання
1Шахід С., 1Іршад С.
  1. Інститут біохімії і біотехнології, Университета Пенждаба
    Лахор, Пакистан

Abstract

Обговорюється роль стовбурових клітин у лікуванні генетичних захворювань, таких як випадіння волосся і регенерація сітківки. При корекції генетичних захворювань, спричинених наявністю певних мутацій, найперспективнішим вважають пересадження стовбурових клітин без таких мутацій для подальшої клітинної регенерації і відновлення нормальних функцій тканин.
Keywords: стовбурові клітини, генетичні захворювання, завитка, сітківка ока, регенерація

References

[1] Kageyama R., Shimojo H., Ohtsuka T., Imayoshi I. Maintenance of neural stem cells in the brain: role of Notch signaling Stem Cells and Cancer Stem Cells 2012 4, Part 1:31–39.
[2] Baumann K. Self-help in the niche. Nat Rev Mol Cell Biol. 2012;13(2):61.
[3] Imura T. Adult Neural Stem Cells; Identity and Regulation Stem Cells and Cancer Stem Cells 2012 4, N 1:77–84.
[4] Gilbert P. M., Corbel S., Doyonnas R., Havenstrite K., Magnusson K. E., Blau H. M. A single cell bioengineering approach to elucidate mechanisms of adult stem cell self-renewal Integr. Biol. (Camb.) 2012 4, N 4:360–367.
[5] Kaneko K. Characterization of stem cells and cancer cells on the basis of gene expression profile stability, plasticity, and robustness: dynamical systems theory of gene expressions under cellcell interaction explains mutational robustness of differentiated cells and suggests how cancer cells emerge Bioessays 2011 33, N 6:403–413.
[6] Wong R. C. B., Pera M. F., Pebay A. Role of gap junctions in embryonic and somatic stem cells Stem Cell Rev 2008 4, N 4:283–292.
[7] Beisel K., Hansen L., Soukup G., Fritzsch B. Regenerating cochlear hair cells: quo vadis stem cell Cell Tissue Res 2008 333, N 3:373–379.
[8] Shevde N. Stem cells: flexible friends Nature 2012 483, N 7387, suppl S22–S26.
[9] Okano T., Kelley M. W. Stem cell therapy for the Inner ear: recent advances and future directions Trends Ampl 2012 16, N 1:4–18.
[10] Mackay-Sim A., Silburn P. Stem cells and genetic disease Cell Prolif 2008 41, Suppl. 1:85–93.
[11] Das K. A., Pal R. Induced pluripotent stem cells (iPSCs): the emergence of a new champion in stem cell technology-driven biomedical applications J. Tissue Eng. Regen. Med 2010 4, N 6:413–421.
[12] Frumkin T., Malcov M., Telias M., Gold V., Schwartz T., Azem F., Amit A., Yaron Y., Ben-Yosef D. Human embryonic stem cells carrying mutations for severe genetic disorders In Vitro Cell. Dev. Biol. Anim 2010 46, N 3–4:327–336.
[13] Ben-Yehudah A., Malcov M., Frumkin T., Ben-Yosef D. Mutated human embryonic stem cells for the study of human genetic disorders Methods Mol. Biol 2012 873:179–207.
[14] Robinton D. A., Daley G. Q. The promise of induced pluripotent stem cells in research and therapy Nature–2012 481, N 7381:295–305.
[15] Gauthier M., Maury Y., Peschanski M., Martinat C. Human pluripotent stem cells for genetic disease modeling and drug screening Regen. Med 2011 6, N 5:607–622.
[16] Meissner A., Wernig M., Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells Nat. Biotechnol 2007 25, N 10:1177–1181.
[17] Okita K., Ichisaka T., Yamanaka S. Generation of germlinecompetent induced pluripotent stem cells Nature–2007 448, N 7151:313–317.
[18] Wernig M., Meissner A., Foreman R., Brambrink T., Ku M., Hochedlinger K., Bernstein B. E., Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state Nature 2007 448, N 7151:318–324.
[19] Park I. H., Zhao R., West J. A., Yabuuchi A., Huo H., Ince T. A., Lerou P. H., Lensch M. W., Daley G. Q. Reprogramming of human somatic cells to pluripotency with defined factors Nature 2008 451, N 7151:141–146.
[20] Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors Cell 2007 131, N 5:861–872.
[21] Yu J., Vodyanik M. A., Smuga-Otto K., Antosiewicz-Bourget J., Frane J. L., Tian S., Nie J., Jonsdottir G. A., Ruotti V., Stewart R., Slukvin I. I., Thomson J. A. Induced pluripotent stem cell lines derived from human somatic cells Science 2007 318, N 5858:1917–1920.
[22] Papapetrou E. P., Lee G., Malani N., Setty M., Riviere I., Tirunagari L. M., Kadota K., Roth S. L., Giardina P., Viale A., Leslie C., Bushman F. D., Studer L., Sadelain M. Genomic safe harbors permit high beta-globin transgene expression in thalassemia induced pluripotent stem cells Nat. Biotechnol 2011 29, N 1:73–78.
[23] Park I. H., Arora N., Huo H., Maherali N., Ahfeldt T., Shimamura A., Lensch M. W., Cowan C., Hochedlinger K., Daley G. Q. Disease-specific induced pluripotent stem cells Cell 2008 134, N 5:877–886.
[24] Doyon Y., Vo T. D., Mendel M. C., Greenberg S. G., Wang J., Xia D. F., Miller J. C., Urnov F. D., Gregory P. D., Holmes M. C. Enhancing zincfinger nuclease activity with improved obligate heterodimeric architectures Nat. Methods 2011 8, N 1:74–79.
[25] Zhang F., Cong L., Lodato S., Kosuri S., Church G. M., Arlotta P. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription Nat. Biotechnol 2011 29, N 2:149–153.
[26] Dallerac G., Perronnet C., Chagneau C., Leblanc-Veyrac P., Samson-Desvignes N., Peltekian E., Danos O., Garcia L., Laroche S., Billard J. M., Vaillend C. Rescue of a dystrophin-like protein by exon skipping normalizes synaptic plasticity in the hippocampus of the mdx mouse Neurobiol. Dis 2011 43, N 3:635–641.
[27] Sierant M., Paduszynska A., Kazmierczak-Baranska J., Nacmias B., Sorbi S., Bagnoli S., Sochacka E., Nawrot B. Specific silencing of L392V PSEN1 mutant allele by RNA interference Int. J. Alzheimers Dis 2011 2011:809281.
[28] Wu G., Liu N., Rittelmeyer I., Sharma A. D., Sgodda M., Zaehres H., Bleidissel M., Greber B., Gentile L., Han D. W., Rudolph C., Steinemann D., Schambach A., Ott M., Scholer H. R., Cantz T. Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells PLoS Biol 2011 9, N 7 e1001099.
[29] Raya I., Rodriguez-Piza I., Navarro S., Richaud-Patin Y., Guenechea G., Sanchez-Danes A., Consiglio A., Bueren J., Izpisua Belmonte J. C. A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells Nat. Prot 2010 5, N 4:647–660.
[30] Soldner F., Laganiere J., Cheng A. W., Hockemeyer D., Gao Q., Alagappan R., Khurana V., Golbe L. I., Myers R. H., Lindquist S., Zhang L., Guschin D., Fong L. K., Vu B. J., Meng X., Urnov F. D., Rebar E. J., Gregory P. D., Zhang H. S., Jaenisch R. Generation of isogenic pluripotent stem cells differing exclusively at two early onset parkinson point mutations Cell 2011 146, N 2:318–331.
[31] Pawitan J. A. Prospect of induced pluripotent stem cell Genetic repair to cure genetic diseases Stem Cells Int 2012 2012:498197.
[32] Conde de Felipe MM, Feijoo Redondo A, Garc?a-Sancho J, Schimmang T, Dur?n Alonso MB. Cell- and gene-therapy approaches to inner ear repair. Histol Histopathol. 2011;26(7):923-40.
[33] Ronaghi M., Nasr M., Heller S. Concise review: inner ear stem cells – an oxymoron, but why? Stem Cells 2012 30, N 1:69–74.
[34] Stone J. S., Cotanche D. A. Hair cell regeneration in the avian auditory epithelium Int. J. Dev. Biol 2007 51, N 6–7:633–647.
[35] Turner C. W., Reiss L. A., Gantz B. J. Combined acoustic and electric hearing: preserving residual acoustic hearing Hear Res 2008 242, N 1–2:164–171.
[36] Martinez-Monedero R., Corrales C. E., Cuajungco M. P., Heller S., Edge A. S. Reinnervation of hair cells by auditory neurons after selective removal of spiral ganglion neurons J. Neurobiol 2006 66, N 4:319–331.
[37] Senn P., Heller S. Stem-cell-based approaches for treating inner ear diseases HNO 2008 56, N 1:21–26.
[38] Devarajan K., Staecker H., Detamore M. S. A review of gene delivery and stem cell based therapies for regenerating inner ear hair cells J. Funct. Biomater 2011 2, N 3:249–270.
[39] Rask-Andersen H., Bostrom M., Gerdin B., Kinnefors A., Nyberg G., Engstrand T., Miller J. M., Lindholm D. Regeneration of human auditory nerve. In vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion Hear Res 2005 203, N 1:180–191.
[40] Oshima K., Grimm C. M., Corrales C. E., Senn P., Martinez-Monedero R., Geleoc G. S., Edge A., Holt J. R., Heller S. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear J. Assoc. Res. Otolaryngol 2007 8, N 1:18–31.
[41] Senn P., Oshima K., Teo D., Grimm C., Heller S. Robust postmortem survival of murine vestibular and cochlear stem cells J. Assoc. Res. Otolaryngol 2007 8, N 2:194–204.
[42] Jeon S. J., Oshima K., Heller S., Edge A. S. Bone marrow mesenchymal stem cells are progenitors in vitro for inner ear hair cells Mol. Cell. Neurosci 2007 34, N 1:59–68.
[43] Coleman B., Fallon J. B., Pettingill L. N., de Silva M. G., Shepherd R. K. Auditory hair cell explant co-cultures promote the differentiation of stem cells into bipolar neurons Exp. Cell Res 2007 313, N 2:232–243.
[44] Hu Z., Wei D., Johansson C. B., Holmstrom N., Duan M., Frisen J., Ulfendahl M. Survival and neural differentiation of adult neural stem cells transplanted into the mature inner ear Exp. Cell Res 2005 302, N 1:40–47.
[45] Corrales C. E., Pan L., Li H., Liberman M. C., Heller S., Edge A. S. Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of Corti J Neurobiol. 2006;66(13):1489-500.
[46] Ulfendahl M., Hu Z., Olivius P., Duan M., Wei D. A cell therapy approach to substitute neural elements in the inner ear Physiol. Behav 2007 92, N 1–2:75–79.
[47] Nakagawa T., Ito J. Cell therapy for inner ear diseases Curr. Pharm. Des 2005 11, N 9:1203–1207.
[48] Oshima K., Suchert S., Blevins N. H., Heller S. Curing hearing loss: patient expectations, health care practitioners, and basic science J. Commun. Disord 2010 43, N 4:311–318.
[49] Oshima K., Shin K., Diensthuber M., Peng W. A., Ricci J. A., Heller S. Mechanosensitive Hair Cell-like cells from embryonic and induced pluripotent stem cells Cell 2010 141, N 4:704–716.
[50] Martinez-Monedero R., Edge A. S. Stem cells for the replacement of inner ear neurons and hair cells Int. J. Dev. Biol 2007 51, N 6–7:655–661.
[51] Boyer L. A., Lee T. I., Cole M. F., Johnstone S. E., Levine S. S., Zucker J. P., Guenther M. G., Kumar R. M., Murray H. L., Jenner R. G., Gifford D. K., Melton D. A., Jaenisch R., Young R. A. Core transcriptional regulatory circuitry in human embryonic stem cells //Cell 2005 122, N 6:947–956.
[52] Grinnemo K. H., Sylven C., Hovatta O., Dellgren G., Corbascio M. Immunogenicity of human embryonic stem cells Cell Tissue Res 2008 331, N 1:67–78.
[53] Sekiya T., Kojima K., Matsumoto M., Kim T. S., Tamura T., Ito J. Cell transplantation to the auditory nerve and cochlear duct Exp. Neurol 2006 198, N 1:12–24.
[54] Jongkamonwiwat N., Zine A., Rivolta M. N. Stem cell based therapy in the inner ear: appropriate donor cell types and routes for transplantation Curr. Drug Targets 2010 11, N 7:888– 897.
[55] Kamiya K., Fujinami Y., Hoya N., Okamoto Y., Kouike H., Komatsuzaki R., Kusano R., Nakagawa S., Satoh H., Fujii M., Matsunaga T. Mesenchymal stem cell transplantation accelerates hearing recovery through the repair of injured cochlear fibrocytes Am. J. Pathol 2007 171, N 1:214–226.
[56] Matsuoka A. J., Kondo T., Miyamoto R. T., Hashino E. In vivo and in vitro characterization of bone marrow derived stem cells in the cochlea Laryngoscope 2006 116, N 8:1363–1367.
[57] Vlastarakos P. V., Nikolopoulos T. P., Tavoulari E., Papacharalambous G., Tzagaroulakis A., Dazert S. Sensory cell regeneration and stem cells: what we have already achieved in the management of deafness Otol. Neurotol 2008 29, N 6:758–768.
[58] Beites C. L., Kawauchi S., Crocker C. E., Calof A. L. Identification and molecular regulation of neural stem cells in the olfactory epithelium Exp. Cell Res 2005 306, N 2:309–316.
[59] Low C. B., Liou Y. C., Tang B. L. Neural differentiation and potential use of stem cells from the human umbilical cord for central nervous system transplantation therapy J. Neurosci. Res 2008 86, N 8:1670–1679.
[60] Lang H., Ebihara Y., Schmiedt R. A., Minamiguchi H., Zhou D., Smythe N., Liu L., Ogawa M., Schulte B. A. Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear: mesenchymal cells and fibrocytes J. Comp. Neurol 2006 496, N 2:187–201.
[61] Doyle K. L., Kazda A., Hort Y., McKay S. M., Oleskevich S. Differentiation of adult mouse olfactory precursor cells into hair cells in vitro Stem Cells 2007 25, N 3:621–627.
[62] Sharif S., Nakagawa T., Ohno T., Matsumoto M., Kita T., Riazuddin S., Ito J. The potential use of bone marrow stromal cells for cochlear cell therapy Neuroreport 2007 18, N 4:351–354.
[63] Jaenisch R., Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming Cell 2008 132, N 4:567–582.
[64] Kim J. B., Greber B., Arauzo-Bravo M. J., Meyer J., Park K. I., Zaehres H., Scholer H. R. Direct reprogramming of human neural stem cells by OCT4 Nature. 2009 461, N 7264:649– 653.
[65] Nishimura K., Nakagawa T., Ono K., Ogita H., Sakamoto T., Yamamoto N., Okita K., Yamanaka S., Ito J. Transplantation of mouse induced pluripotent stem cells into the cochlea Neuroreport 2009 20, N 14:1250–1254.
[66] Lanza R. Stem cell breakthrough: don't forget ethics Science 2007 318, N 5858:1865.
[67] Jin Z. B., Okamoto S., Mandai M., Takahashi M. Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges J. Genet 2009 88, N 4:417–424.
[68] Jindal N., Mukhopadhyay A., Anand A. The emerging role of stem cells in ocular neurodegeneration: hype or hope? Mol. Cell Biochem 2012 365, N 1–2:65–76.
[69] Pradhan M., Hayes I., Vincent A. An audit of genetic testing in diagnosis of inherited retinal disorders: a prerequisite for genespecific intervention Clin. Experiment. Ophthalmol 2009 37, N 7:703–711.
[70] Crigler L., Robey R. C., Asawachaicharn A., Gaupp D., Phinney D. G. Human mesenchymal stem cell subpopulations express a variety of neuro regulatory molecules and promote neuronal cell survival and neurogenesis Exp. Neurol 2006 198, N 1:54–64.
[71] Pluchino S., Zanotti L., Rossi B., Brambilla E., Ottoboni L., Salani G., Martinello M., Cattalini A., Bergami A., Furlan R., Comi G., Constantin G., Martino G. Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism Nature 2005 436, N 7048:266–271.
[72] Lee H. J., Lim I. J., Lee M. C., Kim S. U. Human neural stem cells genetically modified to overexpress brain-derived neurotrophic factor promote functional recovery and neuroprotection in a mouse stroke model J. Neurosci. Res 2010 88, N 15:3282– 3294.
[73] Bull N. D., Martin K. R. Concise review: toward stem cell-based therapies for retinal Stem Cells 2011 29, N 8:1170– 1175.
[74] Stern J. H., Temple S. Stem cells for retinal replacement therapy Neurotherapeutics 2011 8, N 4:736–743.
[75] Djojosubroto M. W., Arsenijevic Y. Retinal stem cells: promising candidates for retina transplantation //Cell Tissue Res 2008 331, N 1:347–357.
[76] Wong I. Y., Poon M. W., Pang R. T., Lian Q., Wong D. Promises of stem cell therapy for retinal degenerative diseases Graefes Arch. Clin. Exp. Ophthalmol 2011 249, N 10:1439–1448.
[77] Osakada F., Ikeda H., Sasai Y., Takahashi M. Stepwise differentiation of pluripotent stem cells into retinal cells Nat. Protoc 2009 4, N 6:811–824.
[78] Osakada F., Jin Z. B., Hirami Y., Ikeda H., Danjyo T., Watanabe K., Sasai Y., Takahashi M. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction J. Cell Sci 2009 122, Pt 17:3169–3179.
[79] Buchholz D. E., Hikita S. T., Rowland T. J., Friedrich A. M., Hinman C. R., Johnson L. V., Clegg D. O. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells Stem Cells 2009 27, N 10:2427–2434.
[80] Idelson M., Alper R., Obolensky A., Ben-Shushan E., Hemo I., Yachimovich-Cohen N., Khaner H., Smith Y., Wiser O., Gropp M., Cohen M. A., Even-Ram S., Berman-Zaken Y., Matzrafi L., Rechavi G., Banin E., Reubinoff B. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells Stem Cells 2009 5, N 4:396–408.
[81] Aoki H., Hara A., Niwa M., Motohashi T., Suzuki T., Kunisada T. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells Graefes Arch. Clin. Exp. Ophthalmol 2008 246, N 2:255–265.
[82] Vaajasaari H., Ilmarinen T., Juuti-Uusitalo K., Rajala K., Onnela N., Narkilahti S., Suuronen R., Hyttinen J., Uusitalo H., Skottman H. Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells Mol. Vis 2011 17:558–575.
[83] Eiraku M., Takata N., Ishibashi H., Kawada M., Sakakura E., Okuda S., Sekiguchi K., Adachi T., Sasai Y. Self-organizing opticcup morphogenesis in three dimensional culture Nature 2011 472, N 7341:51–56.
[84] Aftab U., Jiang C., Tucker B., Kim J. Y., Klassen H., Miljan E., Sinden J., Young M. Growth kinetics and transplantation of human retinal progenitor cells Exp. Eye Res 2009 89, N 3:301–310.
[85] Lamba D. A., Gust J., Reh T. A. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice Stem Cells 2009 4, N 1:73–79.
[86] Park U. C., Cho M. S., Park J. H., Kim S. J., Ku S. Y., Choi Y. M., Moon S. Y., Yu H. G. Subretinal transplantation of putative retinal pigment epithelial cells derived from human embryonic stem cells in rat retinal degeneration model Clin. Exp. Reprod. Med 2011 38, N 4:216–221.
[87] Inoue T., Coles B. L., Dorval K., Bremner R., Bessho Y., Kageyama R., Hino S., Matsuoka M., Craft C. M., McInnes R. R., Tremblay F., Prusky G. T., Kooy D. Maximizing functional photoreceptor differentiation from adult human retinal stem cells Stem Cells 2010 28, N 3:489–500.
[88] MacLaren R. E., Pearson R. A., MacNeil A., Douglas R. H., Salt T. E., Akimoto M., Swaroop A., Sowden J. C., Ali R. R. Retinal repair by transplantation of photoreceptor precursors Nature 2006 444, N 7116:203–207.
[89] Lawrence J. M., Singhal S., Bhatia B., Keegan D. J., Reh T. A., Luthert P. J., Khaw P. T., Limb G. A. MIO-M1 cells and similar muller glial cell lines derived from adult human retina exhibit neural stem cell characteristics Stem Cells 2007 25, N 8:2033–2043.
[90] MacNeil A., Pearson R. A., MacLaren R. E., Smith A. J., Sowden J. C., Ali R. R. Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye Stem Cells 2007 25, N 10:2430–2438.
[91] Gualdoni S., Baron M., Lakowski J., Decembrini S., Smith A. J., Pearson R. A., Ali R. R., Sowden J. C. Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors Stem Cells 2010 28, N 6:1048–1059.
[92] Harris J. R., Fisher R., Jorgensen M., Kaushal S., Scott E. W. CD133 progenitor cells from the bone marrow contribute to retinal pigment epithelium repair Stem Cells 2009 27, N 2:457–466.
[93] Zwart I., Hill A. J., Al-Allaf F., Shah M., Girdlestone J., Sanusi A. B., Mehmet H., Navarrete R., Navarrete C., Jen L.S. Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model Exp. Neurol 2009 216, N 2:439–448.
[94] Tian B., Li X. X., Shen L., Zhao M., Yu W. Z. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice Chin. Med. J. (Engl.). 2010 123, N 16:2265–2268.
[95] Lian Q., Zhang Y., Zhang J., Zhang H. K., Wu X., Zhang Y., Lam F. F., Kang S., Xia J. C., Lai W. H., Au K. W., Chow Y. Y., Siu C. W., Lee C. N., Tse H. F. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice Circulation 2010 121, N 9:1113–1123.
[96] Levkovitch-Verbin H., Sadan O., Vander S., Rosner M., Barhum Y., Melamed E., Offen D., Melamed S. Intravitreal injections of neurotrophic factors secreting mesenchymal stem cells are neuroprotective in rat eyes following optic nerve transection Invest. Ophthalmol. Vis. Sci 2010 51, N 12:6394–6400.
[97] Xu H., Sta Iglesia D. D., Kielczewski J. L., Valenta D. F., Pease M. E., Zack D. J., Quigley H. A. Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes Invest. Ophthalmol. Vis. Sci 2007 48, N 4:1674–1682.
[98] Djojosubroto M., Bollotte F., Wirapati P., Radtke F., Stamenkovic I., Arsenijevic Y. Chromosomal number aberrations and transformation in adult mouse retinal stem cells in vitro Invest. Ophthalmol. Vis. Sci 2009 50, N 12:5975–5987.
[99] Zhou L., Wang W., Liu Y., Fernandez de Castro J., Ezashi T., Telugu B. P., Roberts R. M., Kaplan H. J., Dean D. C. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina Stem Cells 2011 29, N 6:972–980.
[100] Hara A., Aoki H., Takamatsu M., Hatano Y., Tomita H., Kuno T., Niwa M., Kunisada T. Human embryonic stem cells transplanted into mouse retina induces neural differentiation Stem Cells and Cancer Stem Cells 2012 2, N 4:291–298.
[101] Meyer J. S., Howden S. E., Wallace K. A., Verhoeven A. D., Wright L. S., Capowski E. E., Pinilla I., Martin J. M., Tian S., Stewart R., Pattnaik B., Thomson J. A., Gamm D. M. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment Stem Cells 2011 29, N 8:1206–1218.