Biopolym. Cell. 1987; 3(2):66-71.
Структура та функції біополімерів
Вплив різної стабільності пар основ на кінетику плавлення ДНК
1Аншєлевіч В. В., 1Вологодський А. В.
  1. Інститут молекулярної генетики АН СРСР
    Москва, СРСР

Abstract

Розглянуто кінетику кооперативного виплавлення ділянок ДНК, розташованих на кордоні спіральних областей. На підставі точних розрахунків, які враховують реальну послідовність пар основ у таких ділянках, показано, що внутрішня гетерогенність ділянок цього типу чинить радикальний вплив на кінетику розглянутого процесу. Врахування внутрішньої гетерогенності призводить до збільшення часу релаксації на кілька порядків у порівнянні з моделлю, де стабільність пар основ усередині ділянки вважається однаковою. Отримувані часи релаксації добре узгоджуються з експериментальними даними. На основі проведеного аналізу процесу вдалося виокремити прості характеристики послідовності, що визначають його швидкість.

References

[1] Spatz HC, Crothers DM. The rate of DNA unwinding. J Mol Biol. 1969;42(2):191-219.
[2] Hoff AJ, Roos AL. Hysteresis of denaturation of DNA in the melting range. Biopolymers. 1972;11(6):1289-94.
[3] Michel F. Hysteresis and partial irreversibility of denaturation of DNA as a means of investigating the topology of base distribution constraints: application to a yeast rho- (petite) mitochondrial DNA. J Mol Biol. 1974;89(2):305-26.
[4] Yabuki S, Gotoh O, Wada A. Fine structures in denaturation curves of bacteriophage lambda DNA. Their relation to the intramolecular heterogeneity in base compositon. Biochim Biophys Acta. 1975;395(3):258-73.
[5] Lyubchenko YL, Frank-Kamenetskii MD, Vologodskii AV, Lazurkin YS, Gause GG Jr. Fine structure of DNA melting curves. Biopolymers. 1976;15(6):1019-36.
[6] Vizard DL, Ansevin AT. High resolution thermal denaturation of DNA: thermalites of bacteriophage DNA. Biochemistry. 1976;15(4):741-50.
[7] Lyubchenko YL, Vologodskii AV, Frank-Kamenetskii MD. Direct comparison of theoretical and experimental melting profiles for RF II phiX174 DNA. Nature. 1978;271(5640):28-31.
[8] Wada A, Yabuki S, Husimi Y. Fine structure in the thermal denaturation of DNA: high temperature-resolution spectrophotometric studies. CRC Crit Rev Biochem. 1980;9(2):87-144.
[9] Gotoh O. Prediction of melting profiles and local helix stability for sequenced DNA. Adv Biophys. 1983;16:1-52.
[10] Vologodskii AV, Amirikyan BR, Lyubchenko YL, Frank-Kamenetskii MD. Allowance for heterogeneous stacking in the DNA helix-coil transition theory. J Biomol Struct Dyn. 1984;2(1):131-48.
[11] Perelroyzen MP, Lyamichev VI, Kalambet YuA, Lyubchenko YuL, Vologodskii AV. A study of the reversibility of helix-coil transition in DNA. Nucleic Acids Res. 1981;9(16):4043-59.
[12] Anshelevich VV, Vologodskii AV, Lukashin AV, Frank-Kamenetskii MD. Slow relaxational processes in the melting of linear biopolymers: a theory and its application to nucleic acids. Biopolymers. 1984;23(1):39-58.
[13] Schwarz M, Poland D. Random walk with two interacting walkers. J Chem Phys. 1975; 63(1):557-568.
[14] Schwarz M, Poland D. Relaxation in biological macromolecules: Properties of some exact solutions. J Chem Phys. 1976; 65(7):2620-33.
[15] Kozyavkin SA, Lyubchenko YL. The nonequilibrium character of DNA melting: effects of the heating rate on the fine structure of melting curves. Nucleic Acids Res. 1984;12(10):4339-49.
[16] Suyama A, Wada A. Unwinding kinetics of cooperatively melting regions in DNA. Biopolymers. 1984;23(3):409-33.
[17] Porschke D, Eigen M. Co-operative non-enzymic base recognition. 3. Kinetics of the helix-coil transition of the oligoribouridylic--oligoriboadenylic acid system and of oligoriboadenylic acid alone at acidic pH. J Mol Biol. 1971;62(2):361-81.
[18] Craig ME, Crothers DM, Doty P. Relaxation kinetics of dimer formation by self complementary oligonucleotides. J Mol Biol. 1971;62(2):383-401.
[19] Oka A, Nomura N, Morita M, Sugisaki H, Sugimoto K, Takanami M. Nucleotide sequence of small ColE1 derivatives: structure of the regions essential for autonomous replication and colicin E1 immunity. Mol Gen Genet. 1979;172(2):151-9.
[20] Lifshits IM. Contribution to the statistical thermodynamics of fusion of long heteropolymer chains. Journal of Experimental and Theoretical Physics. 1974; 65(3):1100-1110.
[21] Azbel MY. DNA sequencing and helix-coil transition. I. Theory of DNA melting. Biopolymers. 1980;19(1):61-80.