Biopolym. Cell. 1989; 5(6):25-32.
Структура та функції біополімерів
Вплив іонів лужноземельних і перехідних металів на гідродинамічні і макромолекулярні параметри ДНК
1Корнілова С. В., 1Шкорбатов А. Г., 1Благой Ю. П.
  1. Фізико-технічний інститут низьких температур АН УРСР
    Харків, СРСР

Abstract

Вивчено вплив іонів Me2+ лужноземельних (Mg2+, Ca2+) і перехідних (Mn2+, Сu2+) металів на характеристичну в’язкість [η] і величину параметра виключеного об’єму ДНК ?. Показано що іони Mn2+ і Сu2+ чинять більший ефект на величини [η] і ε, ніж іони Mg2+ і Ca2+, внаслідок зв’язування з азотистими основами ДНК вже за малих концентрацій (5·106 М). Встановлено універсальні залежності величин [η] і ε від ступеня зв’язування Me2+.

References

[1] Blagoi IuP, Kornilova SV, Sokhan VI. Changing characteristic viscosity of DNA interacting with Cu2+ and Mn2+ ions. Mol Biol (Mosk). 1982;16(1):210-6.
[2] Bilagoi YuP, Kornilova SV, Shkorbatov AG, Egupov SA. Bivalent metal ion effects on chain stiffness and excluded volume of DNA. Stud biophys.1986. 108(1):17-24.
[3] Reuben J, Gabbay EJ. Binding of manganese(II) to DNA and the competitive effects of metal ions and organic cations. An electron paramagnetic resonance study. Biochemistry. 1975;14(6):1230-5.
[4] Kornilova S. V., Blagoi Yu. P., Shkorbatov A. G. Metal ion effect on molecular sites and intermolecular interaction in DNA. Water and ions in biol. syst. New-York: Plenum Press, 1986. 856 p.
[5] Kos'ianenko NA, Selman-Housein Sosa G, Uverskii VN, Frisman EV. Effect of Mn2+ and Mg2+ ions on DNA conformation. Mol Biol (Mosk). 1987;21(1):140-6.
[6] Clement RM, Sturm J, Daune MP. Interaction of metallic cations with DNA VI. Specific binding of Mg++ and Mn++. Biopolymers. 1973;12(2):405–21.
[7] Frisman EV. Optical and hydrodynamic behavior of dna and its complexes with biologically active molecules. IV Int. Biophys. Congr.: Proc. of reports. Pushchino, 1973; Vol. 1:301.
[8] Hagerman PJ. Investigation of the flexibility of DNA using transient electric birefringence. Biopolymers. 1981;20(7):1503-35.
[9] Frank-Kamenetskii MD. Fluctuational mobility of DNA. Mol Biol (Mosk). 1983;17(3):639-52.
[10] Ross PD, Scruggs RL. Viscosity study of DNA. II. The effect of simple salt concentration on the viscosity of high molecular weight DNA and application of viscometry to the study of DNA isolated from T4 and T5 bacteriophage mutants. Biopolymers. 1968;6(8):1005-18.
[11] Blagoy YuP, Kornilova SV, Sorokin VA, Shkorbatov AG. Influence of metal ions on the DNA structure of various molecular weights. Stud biophys. 1986; 114(1-3):263-268.
[12] Blagoi IuP, Sorokin VA, Valeev VA. Spectral studies of binding between DNA bases and magnesium or calcium ions. Mol Biol (Mosk). 1980;14(3):595-605.
[13] Zimmer Ch. Binding von Divalent Metallionen un Nucleinsaiiren und Wirkungen auf die Konformation der Deoxyribonucleinsaiire. Zeitshrift Chem. 1971; 11(12):441-458.
[14] Livshits IM, Grosberg AYu, Khokhlov AP. Volume interactions in statistical physics of a polymer macromolecules. Usp fiz nauk. 1979; 127(3):353-88.
[15] Manning GS. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978;11(2):179-246.
[16] Lukashin AV, Anshelevich VV, Frank-Kamenetskii MD. Modern state of the theory of strongly charged Polyelectrolyte of tyPe DNA. Pushchino, 1985; 29 P.
[17] Slonitskii SV, Frisman EV, Valeev AD, El'iashevich AM. Calculation of the intrinsic viscosity of synthetic and biological polyelectrolytes of various rigidity. Mol Biol (Mosk). 1980;14(3):484-95.
[18] Reinert KE, Geller K. Interactions of different substances with Polyelectrolyte DNA. Stud biophys. 1968; 30(10)65-73.