Biopolym. Cell. 1986; 2(4):167-178.
Competition in the translation of eucaryotic messenger RNAs
1Starodub N. F., 1Rachkov A. E.
  1. Institute of Molecular Biology and Genetics, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR


Discrimination of certain messenger RNAs in translation is demonstrated both in vitro and in vivo at the physiological state of cells and under the effect of extremal situations. The role of ribosomal proteins, ion concentration, translational factors, set of tRNA in providing of more efficient translation of some mRNAs as compared with others is discussed.


[1] Kramer G., Hardesty B. Regulation of eucaryotic protein synthesis. Cell Biol. 1980; 4(1):69-105.
[2] Woodland H. The translational control phase of early development. Biosci Rep. 1982;2(7):471-91.
[3] Austin SA, Kay JE. Translational regulation of protein synthesis in eukaryotes. Essays Biochem. 1982;18:79-120.
[4] Ochoa S. Regulation of protein synthesis initiation in eucaryotes. Arch Biochem Biophys. 1983;223(2):325-49.
[5] Croall DE, Morrison MR. Polysomal and non-polysomal messenger RNA in neuroblastoma cells. Lack of correlation between polyadenylation or initiation efficiency and messenger RNA location. J Mol Biol. 1980;140(4):549-64.
[6] Walden W. E., Thach R. E. The role of mRNA competition in regulation translation in normal fibroblasts. In: Interaction translational and transcriptional control regulation gene expression. New York: Acad, press, 1982:399-413.
[7] Lodish HF. Alpha and beta globin messenger ribonucleic acid. Different amounts and rates of initiation of translation. J Biol Chem. 1971;246(23):7131-8.
[8] Farace MG, Fantoni A, Raschella G, Tripodi M, Perugini A, Gambari R. Translational discrimination between embryonic and adult mouse globin mRNAs in the rabbit reticulocyte lysate system. Acta Biol Med Ger. 1981;40(4-5):527-33.
[9] Liebhaber SA, Kan YW. Different rates of mRNA translation balance the expression of the two human alpha-globin loci. J Biol Chem. 1982;257(20):11852-5.
[10] Wieringa B, van der Zwaag-Gerritsen J, Mulder J, Ab G, Gruber M. Translation in vivo and in vitro of mRNAs coding for vitellogenin, serum albumin and very-low-density lipoprotein II from chicken liver. A difference in translational efficiency. Eur J Biochem. 1981;114(3):635-41.
[11] Rosenthal ET, Hunt T, Ruderman JV. Selective translation of mRNA controls the pattern of protein synthesis during early development of the surf clam, Spisula solidissima. Cell. 1980;20(2):487-94.
[12] Bienz M, Gurdon JB. The heat-shock response in Xenopus oocytes is controlled at the translational level. Cell. 1982;29(3):811-9.
[13] Lozovskaya EP, Yevgen'yeva MB. Drosophila heat shock and regulation of activity of the genome. Molekulyarnaya biologiya. VINITI, (Itogi nauki i tekhniki; Vol. 20). 1984:142-85.
[14] Banerji SS, Theodorakis NG, Morimoto RI. Heat shock-induced translational control of HSP70 and globin synthesis in chicken reticulocytes. Mol Cell Biol. 1984;4(11):2437-48.
[15] Key JL, Lin CY, Chen YM. Heat shock proteins of higher plants. Proc Natl Acad Sci U S A. 1981;78(6):3526-30.
[16] Bag J. Regulation of heat-shock protein synthesis in chicken muskle culture during recovery from heat shock. Eur. J. Biochem. 1983. 135, N 3:373-378.
[17] Panniers R, Henshaw EC. Mechanism of inhibition of polypeptide chain initiation in heat-shocked Ehrlich ascites tumour cells. Eur J Biochem. 1984;140(1):209-14.
[18] Kennedy IM, Burdon RH, Leader DP. Heat shock causes diverse changes in the phosphorylation of the ribosomal proteins of mammalian cells. FEBS Lett. 1984;169(2):267-73.
[19] Trachsel H, Sonenberg N, Shatkin AJ, Rose JK, Leong K, Bergmann JE, Gordon J, Baltimore D. Purification of a factor that restores translation of vesicular stomatitis virus mRNA in extracts from poliovirus-infected HeLa cells. Proc Natl Acad Sci U S A. 1980;77(2):770-4.
[20] Thomas JR, Wagner RR. Inhibition of translation in lysates of mouse L cells infected with vesicular stomatitis virus: presence of a defective ribosome-associated factor. Biochemistry. 1983;22(7):1540-6.
[21] Ray BK, Brendler TG, Adya S, Daniels-McQueen S, Miller JK, Hershey JW, Grifo JA, Merrick WC, Thach RE. Role of mRNA competition in regulating translation: further characterization of mRNA discriminatory initiation factors. Proc Natl Acad Sci U S A. 1983;80(3):663-7.
[22] Kaerlein M, Horak I. Identification and characterization of ribosomal proteins phosphorylated in vaccinia-virus-infected HeLa cells. Eur J Biochem. 1978;90(3):463-9.
[23] Ballinger DG, Hunt T. Fertilization of sea urchin eggs is accompanied by 40 S ribosomal subunit phosphorylation. Dev Biol. 1981;87(2):277-85.
[24] Westermann P, Nygard O. Cross-linking of mRNA to initiation factor eIF-3, 24 kDa cap binding protein and ribosomal proteins S1, S3/3a, S6 and S11 within the 48S pre-initiation complex. Nucleic Acids Res. 1984;12(23):8887-97.
[25] Kruppa J, Clemens MJ. Differential kinetics of changes in the state of phosphorylation of ribosomal protein S6 and in the rate of protein synthesis in MPC 11 cells during tonicity shifts. EMBO J. 1984;3(1):95-100.
[26] Carrasco L, Smith AE. Sodium ions and the shut-off of host cell protein synthesis by picornaviruses. Nature. 1976 Dec 23-30;264(5588):807-9.
[27] Koch G, Oppermann H, Bilello P, Koch F, Nuss D. Control of peptide chain initiation in uninfected and virus infected cells by membrane mediated events. Hamatol Bluttransfus. 1976;19:541-55.
[28] Shull GE, Theil EC. Translational control of ferritin synthesis by iron in embryonic reticulocytes of the bullfrog. J Biol Chem. 1982;257(23):14187-91.
[29] Kaempfer R. Messenger RNA competition: Protein biosynthesis in the eukaryotes. Protein Biosynthesis in Eukaryotes NATO Advanced Study Institutes Series. 1982; 41:441-457.
[30] Lodish HF. Model for the regulation of mRNA translation applied to haemoglobin synthesis. Nature. 1974;251(5474):385-8.
[31] Birge CH, Golini F, Thach RE. Methods for analyzing messenger discrimination in eukaryotic initiation factors. Methods Enzymol. 1979;60:375-80.
[32] Leder P, Bursztyn H. Initiation of protein synthesis II. A convenient assay for the ribosome-dependent synthesis of N-formyl-C14-methionylpuromycin. Biochem Biophys Res Commun. 1966;25(2):233-8.
[33] Vournakis JN, Vary CPH. The role of mRNA structure in the regulation of protein synthesis: Implications for studies of development. Dev Genet. 1984; 4(4):313-332.
[34] Asselbergs FA, van Venrooij WJ, Bloemendal H. Messenger RNA competition in living Xenopus oocytes. Eur J Biochem. 1979;94(1):249-54.
[35] Asselbergs FA, Meulenberg E, van Venrooij WJ, Bloemendal H. Preferential translation of mRNAs in an mRNA-dependent reticulocyte lysate. Eur J Biochem. 1980;109(1):159-65.
[36] Konijn A., Kaempfer R. Translational competition by mRNA species encodine ferritin, haemopexin, albumin and globin. Structure and function iron storage and transport proteins. Amsterdam: Elsevier, 1983:97-103.
[37] Lomedico PT, Saunders GF. Cell-free modulation of proinsulin synthesis. Science. 1977;198(4317):620-2.
[38] Permutt MA, Kipnis DM. Insulin biosynthesis. I. On the mechanism of glucose stimulation. J Biol Chem. 1972;247(4):1194-9.
[39] Ignotz GG, Hokari S, DePhilip RM, Tsukada K, Lieberman I. Lodish model and regulation of ribosomal protein synthesis by insulin-deficient chick embryo fibroblasts. Biochemistry. 1981;20(9):2550-8.
[40] Monier S, Le Marchand-Brustel Y. Effects of insulin and IGF-I on RNA synthesis in isolated soleus muscle. Mol Cell Endocrinol. 1984;37(1):109-14.
[41] Walden WE, Godefroy-Colburn T, Thach RE. The role of mRNA competition in regulating translation. I. Demonstration of competition in vivo. J Biol Chem. 1981;256(22):11739-46.
[42] Sonenshein GE, Brawerman G. Differential translation of rat liver albumin messenger RNA in a wheat germ cell-free system. Biochemistry. 1977;16(25):5445-8.
[43] Lodish HF. Translational control of protein synthesis. Annu Rev Biochem. 1976;45:39-72.
[44] Revel M, Groner Y. Post-transcriptional and translational controls of gene expression in eukaryotes. Annu Rev Biochem. 1978;47:1079-126.
[45] Gren EJ. Recognition of messenger RNA during translational initiation in Escherichia coli. Biochimie. 1984;66(1):1-29.
[46] Khudiakov IuE. The Shine-Dalgarno sequence and the effectiveness of translation initiation. Mol Biol (Mosk). 1985;19(3):702-16.
[47] Payvar F, Schimke RT. Methylmercury hydroxide enhancement of translation and transcription of ovalbumin and conalbumin mRNA's. J Biol Chem. 1979;254(16):7636-42.
[48] Palatnik CM, Wilkins C, Jacobson A. Translational control during early Dictyostelium development: possible involvement of poly(A) sequences. Cell. 1984;36(4):1017-25.
[49] Skup D, Zarbl H, Millward S. Regulation of translation in L-cells infected with reovirus. J Mol Biol. 1981;151(1):35-55.
[50] Tahara SM, Morgan MA, Shatkin AJ. Two forms of purified m7G-cap binding protein with different effects on capped mRNA translation in extracts of uninfected and poliovirus-infected HeLa cells. J Biol Chem. 1981;256(15):7691-4.
[51] Salimans MM, van Heugten HA, van Steeg H, Voorma HO. The effect of serum deprivation on the initiation of protein synthesis in mouse neuroblastoma cells. Biochim Biophys Acta. 1985;824(1):16-26.
[52] Rosen H, Di Segni G, Kaempfer R. Translational control by messenger RNA competition for eukaryotic initiation factor 2. J Biol Chem. 1982;257(2):946-52.
[53] Kabat D, Chappell MR. Competition between globin messenger ribonucleic acids for a discriminating initiation factor. J Biol Chem. 1977;252(8):2684-90.
[54] Sarkar G, Edery I, Gallo R, Sonenberg N. Preferential stimulation of rabbit alpha globin mRNA translation by a cap-binding protein complex. Biochim Biophys Acta. 1984;783(2):122-9.
[55] Edery I, HГјmbelin M, Darveau A, Lee KA, Milburn S, Hershey JW, Trachsel H, Sonenberg N. Involvement of eukaryotic initiation factor 4A in the cap recognition process. J Biol Chem. 1983;258(18):11398-403.
[56] Sonenberg N, Trachsel H. Probing the function of the eukaryotic 5'-cap structure using monoclonal antibodies to cap-binding proteins. Curr Top Cell Regul. 1982;21:65-88.
[57] Tahara SM, Morgan MA, Shatkin AJ. Binding of inosine-substituted mRNA to reticulocyte ribosomes and eukaryotic initiation factors 4A and 4B requires ATP. J Biol Chem. 1983;258(18):11350-3.
[58] Heywood SM, Kennedy DS. Messenger RNA affinity column fractionation of eukaryotic initiation factor and the translation of myosin messenger RNA. Arch Biochem Biophys. 1979;192(1):270-81.
[59] O'Loughlin J, Lehr L, Havaranis A, Heywood SM. Encapsulation of "core" eIF3, regulatory components of eIF3 and mRNA into liposomes, and their subsequent uptake into myogenic cells in culture. J Cell Biol. 1981;90(1):160-8.
[60] Hunt T. The initiation of protein synthesis. Trends Biochem. Sci. 1980. 5(7):178-81.
[61] Sonenberg N, Guertin D, Lee KA. Capped mRNAs with reduced secondary structure can function in extracts from poliovirus-infected cells. Mol Cell Biol. 1982;2(12):1633-8.
[62] Rhoads RE, Hellmann GM, Remy P, Ebel JP. Translational recognition of messenger ribonucleic acid caps as a function of pH. Biochemistry. 1983;22(26):6084-8.
[63] Liebhaber SA, Cash FE, Shakin SH. Translationally associated helix-destabilizing activity in rabbit reticulocyte lysate. J Biol Chem. 1984;259(24):15597-602.
[64] Matts RL, London IM. The regulation of initiation of protein synthesis by phosphorylation of eIF-2(alpha) and the role of reversing factor in the recycling of eIF-2. J Biol Chem. 1984;259(11):6708-11.
[65] Goss DJ, Parkhurst LJ, Mehta HB, Woodley CL, Wahba AJ. Studies on the role of eukaryotic nucleotide exchange factor in polypeptide chain initiation. J Biol Chem. 1984;259(12):7374-7.
[66] Siekierka J, Mariano TM, Reichel PA, Mathews MB. Translational control by adenovirus: lack of virus-associated RNAI during adenovirus infection results in phosphorylation of initiation factor eIF-2 and inhibition of protein synthesis. Proc Natl Acad Sci U S A. 1985;82(7):1959-63.
[67] Smith JH, Subbarao MN, Eliceiri GL. Small nuclear RNAs and translation. J Cell Physiol. 1983;114(1):1-6.
[68] El'skaia AV, Matuska GKh. Some peculiarities of transfer RNA of lactiferous gland tissue in various functional states. Ukr Biokhim Zh. 1968;40(1):27-33.
[69] Osterman AA. The participation of tRNA in the regulation of protein synthesis at the translational level in eukaryotes. Usp biol khimii. 1980; 21(6):54-78.
[70] Pickett MH, White BN, Davies PL. Evidence that translational control mechanisms operate to optimize antifreeze protein production in the winter flounder. J Biol Chem. 1983;258(24):14762-5.
[71] Kelly SJ, Loria J, Gyves MT, Ilan J. Effect of transfer RNA from various sources on placental messenger RNA translation. Mol Cell Endocrinol. 1983;29(2):181-95.
[72] El'skaya AV, Turkovskaya GV, Rozhko OT, Starodub NF. The role of functional adaptation of tRNA in regulation of specific protein biosynthesis. Biokhimiia. 1983; 48(4):611-6.
[73] Chavancy G, Garel JP. Does quantitative tRNA adaptation to codon content in mRNA optimize the ribosomal translation efficiency? Proposal for a translation system model. Biochimie. 1981;63(3):187-95.
[74] Turkovskaia GV, Starodub NF. The effect of exogenous tRNA from different sources on the biosynthesis of milk proteins. Mol Biol (Mosk). 1984;18(5):1380-4.
[75] Beier H, Barciszewska M, Sickinger HD. The molecular basis for the differential translation of TMV RNA in tobacco protoplasts and wheat germ extracts. EMBO J. 1984;3(5):1091-6.
[76] Sharma OK, Mays LL, Borek E. Functional differences in protein synthesis between rat liver tRNA and tRNA from Novikoff hepatoma. Biochemistry. 1975;14(3):509-14.
[77] El'skaia AV, Soldatkin AP. The basis of high-fidelity translation. Mol Biol (Mosk). 1984;18(5):1163-80.
[78] Robinson M, Lilley R, Little S, Emtage JS, Yarranton G, Stephens P, Millican A, Eaton M, Humphreys G. Codon usage can affect efficiency of translation of genes in Escherichia coli. Nucleic Acids Res. 1984;12(17):6663-71.
[79] Gilbert JM, Anderson WF. Cell-free hemoglobin synthesis. II. Characteristics of the transfer ribonucleic acid-dependent assay system. J Biol Chem. 1970;245(9):2342-9.
[80] Chavancy G, Chevallier A, Fournier A, Garel JP. Adaptation of iso-tRNA concentration to mRNA codon frequency in the eukaryote cell. Biochimie. 1979;61(1):71-8.