Biopolym. Cell. 2005; 21(4):312-318.
Cell Biology
Paenibacillus sp., as a promising candidate for development of a novel technology of inoculant production
1Kozyrovska N. O., 1Negrutska V. V., 1Kovalchuk M. V., 1Voznyuk T. N.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680

Abstract

A bacterial strain IMBG156 producing exopolysaccharide (EPS) was isolated from siliceous rock and identified as a Paenibacillus species by partial sequencing its 16S rDNA. Paenibacillus sp. IMBG156 was used in a novel technology for inoculant production based on co-cultivating this bacterium with any bacterium of choice. Paenibacillus sp. provides in situ the bacterial cells of the inoculant with EPS, a carrier, and most likely with a source of carbon and energy. The partner bacterium designates a type of inoculant (biopesticide or biofertiliser). The strain IMBG156 does not destroy the signaling system of Gram-negative partners, based on acylated homoserine lactones, stimulates plant growth, and is rather competitive in the plant rhizosphere and soil. A prototype of the inoculant based on dual-culture Paenibacillus sp. IMBG156 - Pseudomonas sp. IMBG163 exhibits a noticeably longer shelf life than monoculture of Pseudomonas sp. IMBG163.
Keywords: exopolysaccharide, inoculant, partner bacteria

References

[1] Veronese P, Ruiz MT, Coca MA, Hernandez-Lopez A, Lee H, Ibeas JI, Damsz B, Pardo JM, Hasegawa PM, Bressan RA, Narasimhan ML. In defense against pathogens. Both plant sentinels and foot soldiers need to know the enemy. Plant Physiol. 2003;131(4):1580-90.
[2] Zeidler D, Z?hringer U, Gerber I, Dubery I, Hartung T, Bors W, Hutzler P, Durner J. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci U S A. 2004;101(44):15811-6.
[3] Cui J, Bahrami AK, Pringle EG, Hernandez-Guzman G, Bender CL, Pierce NE, Ausubel FM. Pseudomonas syringae manipulates systemic plant defenses against pathogens and herbivores. Proc Natl Acad Sci U S A. 2005;102(5):1791-6.
[4] Thomashow LS, Weller DM. Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. Plant-microbe interactions. Eds G. Stacey, N. T. Keen. New York: Chapman & Hall, 1996. Vol. 1: 187-235.
[5] Emmert EA, Handelsman J. Biocontrol of plant disease: a (gram-) positive perspective. FEMS Microbiol Lett. 1999;171(1):1-9.
[6] Ocumpaugh WR, Smith GR. Granular Inoculum Enhances Establishment and Forage Production of Arrowleaf Clover. J Prod Agric. 1991;4(2):219-24.
[7] Olsen PE, Rice WA, Bordeleau LM, Demidoff AH, Collins MM. Levels and identities of nonrhizobial microorganisms found in commercial legume inoculant made with nonsterile peat carrier. Can J Microbiol. 1996;42(1):72-5.
[8] Walter JF, Paau AS. Microbial inoculant production and formulation. Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Eds F. B. Metting, Jr. New York: Marcel Dekker, Inc., 1997: 579-94.
[9] Manjula K, Podile AR. Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Can J Microbiol. 2001;47(7):618-25.
[10] Russo A, Basaglia M, Tola E, Casella S. Survival, root colonisation and biocontrol capacities of Pseudomonas fluorescens F113 LacZY in dry alginate microbeads. J Ind Microbiol Biotechnol. 2001;27(6):337-42.
[11] Temprano FJ, Albareda M, Camacho M, Daza A, Santamar?a C, Rodr?guez-Navarro DN. Survival of several Rhizobium/Bradyrhizobium strains on different inoculant formulations and inoculated seeds. Int Microbiol. 2002;5(2):81-6.
[12] Kozyrovska N, Kovtunovych G, Gromosova O, Kuharchuk P, Kordyum V. Novel inoculants for an environmentallyfriendly crop production. Resources, Conservation Recycling. 1996; 18: 79-85.
[13] King EO, Ward MK, Raney DE. Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med. 1954;44(2):301-7.
[14] Experiments in Molecular Genetics. Ed Miller JH . Cold Spring Harbor Laboratory Press, U.S. 1972, 468 p.
[15] Krasilnikov N. A. Determinative mannual for bacteria and actinomycetes. Moscow: Ed. Acad. Sci. USSR, 1949. 176 p.
[16] Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab. press, 1989. 472 p.
[17] Edwards U, Rogall T, Bl?cker H, Emde M, B?ttger EC. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 1989;17(19):7843-53.
[18] Fuqua C, Winans SC. Conserved cis-acting promoter elements are required for density-dependent transcription of Agrobacterium tumefaciens conjugal transfer genes. J Bacteriol. 1996;178(2):435-40.
[19] Postgate JR. The acetylene reduction test for nitrogen fixation. Methods in microbiology. Eds J. R. Norris, D. W. Ribbons. London; New-York: Acad, press, 1972: 343-356.
[20] Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994;176(2):269-75.
[21] Chancey ST, Wood DW, Pierson LS 3rd. Two-component transcriptional regulation of N-acyl-homoserine lactone production in Pseudomonas aureofaciens. Appl Environ Microbiol. 1999;65(6):2294-9.
[22] Delany I, Sheehan MM, Fenton A, Bardin S, Aarons S, O'Gara F. Regulation of production of the antifungal metabolite 2,4-diacetylphloroglucinol in Pseudomonas fluorescens F113: genetic analysis of phlF as a transcriptional repressor. Microbiology. 2000;146 (Pt 2):537-43.
[23] Dong YH, Xu JL, Li XZ, Zhang LH. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A. 2000;97(7):3526-31.
[24] Kovalchuk MV, Negrutska VV, Kozyrovska NO. Characteristics of pseudomonads as candidates for a novel inoculat based on the Dual technology. Agroecologichny Zhurnal. 2004; 2: 41-5.
[25] Alagawadi AR, Gaur AC. Inoculation of Azospirillum brasilense and phosphate-solubilizing bacteria on yield of sorghum [Sorghum bicolor (L.) Moench] in dry land. Trop Agric. 1992; 69: 347-50.
[26] Bent E, Tuzun S, Chanway CP, Enebak S. Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol. 2001;47(9):793-800.
[27] M?lbak L, Licht TR, Kvist T, Kroer N, Andersen SR. Plasmid transfer from Pseudomonas putida to the indigenous bacteria on alfalfa sprouts: characterization, direct quantification, and in situ location of transconjugant cells. Appl Environ Microbiol. 2003;69(9):5536-42.