Biopolym. Cell. 2005; 21(5):392-399.
Plant small heat shock proteins
1Talalaev O. S.
  1. M. G. Kholodny Institute of Botany, NAS of Ukraine
    2, Tereschenkivska Str., Kyiv, Ukraine, 01601


Small heat shock proteins (sHsp) are produced ubiquitously in prokaryotic and eukaryotic cells upon heat. The special importance of sHsp in plants is suggested by their unusual abundance and diversity. Six classes of sHsp have been identified in plants. In addition to heat stress, plant sHsp are also produced under other stress conditions and at certain developmental stages. The function of sHsp as molecular chaperones is supported by in vitro and in vivo assays. This review summarizes recent knowledge about plant sHsp gene expression, protein structure and functions.
Keywords: heat shock proteins, chaperones


[1] Waters ER, Lee GJ, Vierling E. Evolution, structure and function of the small heat shock proteins in plants. J Exp Bot. 1996;47(3):325–38.
[2] Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins (sHsps) and a new family of proteins containing a-crystallin domains (Acd proteins). Cell Stress Chap. 2001. 6: 225-237.
[3] Forreiter C, Kirschner M., Nover L Use of a transgenic Arabidopsis cell suspension culture expressing high levels of firefly luciferase as reporter for analysis of chaperone activity in vivo. Plant Cell. 1997; 9:2171-81.
[4] Lee GJ, Roseman AM, Saibil HR, Vierling E. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 1997;16(3):659-71.
[5] Heckathorn SA, Downs CA, Sharkey TD, Coleman JS. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 1998;116(1):439-444.
[6] L?w D, Br?ndle K, Nover L, Forreiter C. Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta. 2000;211(4):575-82.
[7] Derocher AE, Helm KW, Lauzon LM, Vierling E. Expression of a Conserved Family of Cytoplasmic Low Molecular Weight Heat Shock Proteins during Heat Stress and Recovery. Plant Physiol. 1991;96(4):1038-47.
[8] Hsieh MH, Chen JT, Jinn TL, Chen YM, Lin CY. A class of soybean low molecular weight heat shock proteins : immunological study and quantitation. Plant Physiol. 1992;99(4):1279-84.
[9] Vierling E. The Roles Of Heat Shock Proteins In Plants. Annu Rev Plant Physiol Plant Mol Biol. 1991;42(1):579–620.
[10] Helm KW, LaFayette PR, Nagao RT, Key JL, Vierling E. Localization of small heat shock proteins to the higher plant endomembrane system. Mol Cell Biol. 1993;13(1):238-47.
[11] Helm KW, Schmeits J, Vierling E. An endomembrane-localized small heat-shock protein from Arabidopsis thaliana. Plant Physiol. 1995;107(1):287-8.
[12] Lenne C, Douce R. A Low Molecular Mass Heat-Shock Protein Is Localized to Higher Plant Mitochondria. Plant Physiol. 1994;105(4):1255-1261.
[13] Lenne C, Block MA, Garin J, Douce R. Sequence and expression of the mRNA encoding HSP22, the mitochondrial small heat-shock protein in pea leaves. Biochem J. 1995;311 ( Pt 3):805-13.
[14] LaFayette PR, Nagao RT, O'Grady K, Vierling E, Key JL. Molecular characterization of cDNAs encoding low-molecular-weight heat shock proteins of soybean. Plant Mol Biol. 1996;30(1):159-69.
[15] Waters ER. The molecular evolution of the small heat-shock proteins in plants. Genetics. 1995;141(2):785-95.
[16] Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. Plant Mol Biol. 1996;32(1-2):191-222.
[17] Gustavsson N, H?rndahl U, Emanuelsson A, Roepstorff P, Sundby C. Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer. Protein Sci. 1999;8(11):2506-12.
[18] Lund AA, Rhoads DM, Lund AL, Cerny RL, Elthon TE. In vivo modifications of the maize mitochondrial small heat stress protein, HSP22. J Biol Chem. 2001;276(32):29924-9.
[19] Chen Q, Osteryoung K, Vierling E. A 21-kDa chloroplast heat shock protein assembles into high molecular weight complexes in vivo and in Organelle. J Biol Chem. 1994;269(18):13216-23.
[20] Helm KW, Lee GJ, Vierling E. Expression and native structure of cytosolic class II small heat-shock proteins. Plant Physiol. 1997;114(4):1477-85.
[21] Lee GJ, Vierling E. Expression, purification, and molecular chaperone activity of plant recombinant small heat shock proteins. Methods Enzymol. 1998;290:350-65.
[22] Kim R, Kim KK, Yokota H, Kim SH. Small heat shock protein of Methanococcus jannaschii, a hyperthermophile. Proc Natl Acad Sci U S A. 1998;95(16):9129-33.
[23] Kirschner M, Winkelhaus S, Thierfelder JM, Nover L. Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. Plant J. 2000;24(3):397-411.
[24] van Montfort RL, Basha E, Friedrich KL, Slingsby C, Vierling E. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol. 2001;8(12):1025-30.
[25] Sm?kal P, Mas?n J, Hrd? I, Konop?sek I, Z?rsk? V. Chaperone activity of tobacco HSP18, a small heat-shock protein, is inhibited by ATP. Plant J. 2000;23(6):703-13.
[26] Yeh CH, Chang PF, Yeh KW, Lin WC, Chen YM, Lin CY. Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci U S A. 1997;94(20):10967-72.
[27] Plater ML, Goode D, Crabbe MJ. Effects of site-directed mutations on the chaperone-like activity of alphaB-crystallin. J Biol Chem. 1996;271(45):28558-66.
[28] Nover L, Scharf KD, Neumann D. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol. 1989;9(3):1298-308.
[29] Nover L, Scharf KD, Neumann D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol. 1983;3(9):1648-55.
[30] Scharf KD, Heider H, H?hfeld I, Lyck R, Schmidt E, Nover L. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol. 1998;18(4):2240-51.
[31] Howarth CJ. Molecular responses of plants to an increased incidence of heat shock. Plant Cell Environ. 1991;14(8):831–41.
[32] Chen Q, Lauzon LM, DeRocher AE, Vierling E. Accumulation, stability, and localization of a major chloroplast heat-shock protein. J Cell Biol. 1990;110(6):1873-83.
[33] Almoguera C, Coca MA, Jordano J. Tissue-specific expression of sunflower heat shock proteins in response to water stress. Plant J. 1993;4(6):947–58.
[34] Coca MA, Almoguera C, Thomas TL, Jordano J. Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter. Plant Mol Biol. 1996;31(4):863-76.
[35] Almoguera C, Jordano J. Developmental and environmental concurrent expression of sunflower dry-seed-stored low-molecular-weight heat-shock protein and Lea mRNAs. Plant Mol Biol. 1992;19(5):781-92.
[36] Alamillo J, Almoguera C, Bartels D, Jordano J. Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Mol Biol. 1995;29(5):1093-9.
[37] Sun W, Bernard C, van de Cotte B, Van Montagu M, Verbruggen N. At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 2001;27(5):407-15.
[38] Pla M, Huguet G, Verdaguer D, Puigderrajols P, Llompart B, Nadal A, et al. Stress proteins co-expressed in suberized and lignified cells and in apical meristems. Plant Science. 1998;139(1):49–57.
[39] Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J, Triantaphylid?s C. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J. 1998;13(4):519-27.
[40] Lee GJ, Vierling E. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 2000;122(1):189-98.
[41] Sabehat A, Lurie S, Weiss D. Expression of small heat-shock proteins at low temperatures. A possible role in protecting against chilling injuries. Plant Physiol. 1998;117(2):651-8.
[42] Gy?rgyey J, Gartner A, N?meth K, Magyar Z, Hirt H, Heberle-Bors E, Dudits D. Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol Biol. 1991;16(6):999-1007.
[43] Eckey-Kaltenbach H, Kiefer E, Grosskopf E, Ernst D, Sandermann H Jr. Differential transcript induction of parsley pathogenesis-related proteins and of a small heat shock protein by ozone and heat shock. Plant Mol Biol. 1997;33(2):343-50.
[44] Wehmeyer N, Hernandez LD, Finkelstein RR, Vierling E. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 1996;112(2):747-57.
[45] Coca MA, Almoguera C, Jordano J. Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: localization and possible functional implications. Plant Mol Biol. 1994;25(3):479-92.
[46] DeRocher AE, Vierling E. Developmental control of small heat shock protein expression during pea seed maturation. Plant J. 1994;5(1):93–102.
[47] Wehmeyer N, Vierling E. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol. 2000;122(4):1099-108.
[48] Wu C. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol. 1995;11:441-69.
[49] Sch?ffl F, Pr?ndl R, Reindl A. Regulation of the heat-shock response. Plant Physiol. 1998;117(4):1135-41.
[50] Pelham HR. A regulatory upstream promoter element in the Drosophila hsp 70 heat-shock gene. Cell. 1982;30(2):517-28.
[51] Amin J, Ananthan J, Voellmy R. Key features of heat shock regulatory elements. Mol Cell Biol. 1988;8(9):3761-9.
[52] Xiao H, Lis JT. Germline transformation used to define key features of heat-shock response elements. Science. 1988;239(4844):1139-42.
[53] Barros MD, Czarnecka E, Gurley WB. Mutational analysis of a plant heat shock element. Plant Mol Biol. 1992;19(4):665-75.
[54] Pr?ndl R, Kloske E, Sch?ffl F. Developmental regulation and tissue-specific differences of heat shock gene expression in transgenic tobacco and Arabidopsis plants. Plant Mol Biol. 1995;28(1):73-82.
[55] Almoguera C, Prieto-Dapena P, Jordano J. Dual regulation of a heat shock promoter during embryogenesis: stage-dependent role of heat shock elements. Plant J. 1998;13(4):437-46.
[56] Carranco R, Almoguera C, Jordano J. A plant small heat shock protein gene expressed during zygotic embryogenesis but noninducible by heat stress. J Biol Chem. 1997;272(43):27470-5.
[57] Carranco R, Almoguera C, Jordano J. An imperfect heat shock element and different upstream sequences are required for the seed-specific expression of a small heat shock protein gene. Plant Physiol. 1999;121(3):723-30.
[58] Giraudat J, Hauge BM, Valon C, Smalle J, Parcy F, Goodman HM. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell. 1992;4(10):1251-61.
[59] Parcy F, Valon C, Raynal M, Gaubier-Comella P, Delseny M, Giraudat J. Regulation of gene expression programs during arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell. 1994;6(11):1567-82.
[60] Rojas A, Almoguera C, Jordano J. Transcriptional activation of a heat shock gene promoter in sunflower embryos: synergism between ABI3 and heat shock factors. Plant J. 1999;20(5):601-10.
[61] Arrigo AP. Small stress proteins: chaperones that act as regulators of intracellular redox state and programmed cell death. Biol Chem. 1998;379(1):19-26.
[62] Hendrick JP, Hartl FU. The role of molecular chaperones in protein folding. FASEB J. 1995;9(15):1559-69.
[63] Downs CA, Heckathorn SA, Bryan JK, Coleman JS. The methionine-rich low-molecular-weight chloroplast heat-shock protein: evolutionary conservation and accumulation in relation to thermotolerance. Am J Bot. 1998;85(2):175.
[64] Soto A, Allona I, Collada C, Guevara MA, Casado R, Rodriguez-Cerezo E, Aragoncillo C, Gomez L. Heterologous expression of a plant small heat-shock protein enhances Escherichia coli viability under heat and cold stress. Plant Physiol. 1999;120(2):521-8.
[65] van Berkel J, Salamini F, Gebhardt C. Transcripts accumulating during cold storage of potato (Solanum tuberosum L.) tubers are sequence related to stress-responsive genes. Plant Physiol. 1994;104(2):445-52.