Biopolym. Cell. 2005; 21(5):425-432.
Bioorganic Chemistry
Enzymatic conductometric sensor for formaldehyde detection in model samples
1Soldatkin O. O., 1Sosovskaya O. F., 1Benilova I. V., 2Gonchar M. V., 1Korpan Y. I.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Institute of Cell Biology, NAS of Ukraine
    14/16, Drahomanov Str., Lviv, Ukraine, 79005


Thin-film planar electrodes and formaldehyde dehydrogenase from Pseudomonas putida have been used for the development of formaldehyde-sensitive enzyme conductometric biosensor. A new approach to create a biologically active sensor membrane has been proposed. This approach allows to detect formaldehyde concentration without usage of exogenous NAD in the analyzed sample since the biomembrane contains NAD at high concentration (100 mM). Moreover, because of this the formaldehyde concentration can be measured many times with the same transducer without NAD regeneration. The time of formaldehyde analysis in the solution is no longer than 2 min and 10 s in steady-state and kinetic modes of the biosensor signal measuring, respectively. The linear dynamic range of the sensor output signals corresponds to 1–50 mM formaldehyde concentration. The optimal values of pH, buffer capacity and ionic strength have been determined. Operational stability, storage stability and selectivity of the developed conductometric biosensor have also been analyzed.
Keywords: biosensor, formaldehyde dehydrogenase, conductometry


[1] Gerberich HR, Seaman GC. Formaldehyde. Encyclopaedia of Chemical Technology. New York: John Wiley & Sons, 1994;11: 929-51.
[2] Hileman B. Formaldehyde: how did EPA develop its formaldehyde policy?. Environ Sci Technol. 1982;16: 543A-547A.
[3] Herschkovitz Y, Eshkenazi I, Campbell C., Rishpon J. An electrochemical biosensor for formaldehyde. J Electroanal Chem. 2000;491(1-2):182–7.
[4] Ho MH, Richards RA. Enzymatic method for the determination of formaldehyde. Environ Sci Technol. 1990; 24:201-4.
[5] Gigante AC, Gotardo MA, Tognolli JO, Pezza L, Pezza HR. Spectrophotometric determination of formaldehyde with chromotropic acid in phosphoric acid medium assisted by microwave oven. Microchem J. 2004;77(1):47–51.
[6] Kataky R, Bryce MR, Goldenberg L, Hayes S, Nowak A. A biosensor for monitoring formaldehyde using a new lipophilic tetrathiafulvalene-tetracyanoquinodimethane salt and a polyurethane membrane. Talanta. 2002;56(3):451-8.
[7] Coggon D. Extended Follow-Up of a Cohort of British Chemical Workers Exposed to Formaldehyde. Cancer Spectrum Knowledge Environment. 2003;95(21):1608–15.
[8] Hauptmann M, Lubin JH, Stewart PA, Hayes RB, Blair A. Mortality from lymphohematopoietic malignancies among workers in formaldehyde industries. J Natl Cancer Inst. 2003;95(21):1615-23.
[9] International Agency for Research on Cancer (IARC). Formaldehyde. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Wood Dust and Formaldehyde. Lyon, 1995. Vol. 62: 217-362.
[10] Sexton K, Petreas MX, Liu KS. Formaldehyde exposures inside mobile homes. Environ Sci Technol. 1989;23(8):985–8.
[11] Dumas T. Determination of formaldehyde in air by gas chromatography. J Chromatogr A. 1982;247(2):289–95.
[12] Mann B, Grayeski ML. New chemiluminescent derivatizing agent for the analysis of aldehydes and ketones by high-performance liquid chromatography with peroxyoxalate chemiluminescence. J Chromatogr A. 1987;386:149–58.
[13] West PW, Sen B. Spectrophotometric determination of traces of formaldehyde. Z Anal Chem. 1956;153(3):177–83.
[14] Pockard AD, Clark ER. The determination of traces of formaldehyde. Talanta. 1984;31(10 Pt 1):763-71.
[15] M?hlmann GR. Formaldehyde Detection in Air by Laser-Induced Fluorescence. Appl Spectrosc. 1985;39(1):98–101.
[16] Grosjean D. Ambient levels of formaldehyde, acetaldehyde and formic acid in southern California: results of a one-year baseline study. Environ Sci Technol. 1991;25(4):710–5.
[17] Podola B, Nowack EC, Melkonian M. The use of multiple-strain algal sensor chips for the detection and identification of volatile organic compounds. Biosens Bioelectron. 2004;19(10):1253-60.
[18] Vianello F, Stefani A, Di Paolo M., Rigo A, Lui A, Margesin B, et al. Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET. Sens Actuators B Chem. 1996;37(1-2):49–54.
[19] Korpan YI, Soldatkin AP, Gonchar MV, Sibirny AA, Gibson TD, El'skaya AV. A novel enzyme biosensor specific for formaldehyde based on pH-sensitive field effect transistors. J Chem Technol Biotechnol. 1997; 68(2):209-213.
[20] Korpan YI, Gonchar MV, Sibirny AA, Martelet C, El’skaya AV, Gibson TD, et al. Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosens Bioelectron. 2000;15(1-2):77–83.
[21] Dzyadevych S. V., Arkhypova V. N., Korpan Y. I., El'skaya A. V., Soldatkin A. P., Jaffrezic-Renault N., Martelet C. Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics. Analyt. Chim. Acta. 2001; 445(1):47–55.
[22] Korpan YI, Gonchar MV, Starodub NF, Shul'ga AA, Sibirny AA, El'skaya AV. A cell biosensor specific for formaldehyde based on pH-sensitive transistors coupled to methylotrophic yeast cells with genetically adjusted metabolism. Anal Biochem. 1993;215(2):216-22.
[23] H?mmerle M, Hall EA., Cade N, Hodgins D. Electrochemical enzyme sensor for formaldehyde operating in the gas phase. Biosens Bioelectron. 1996;11(3):239–46.
[24] Vastarella W, Nicastri R. Enzyme/semiconductor nanoclusters combined systems for novel amperometric biosensors. Talanta. 2005;66(3):627-33.