Biopolym. Cell. 2008; 24(1):41-50.
Molecular and Cell Biotechnologies
Optimization of enzymatic bioselective elements as components of potentiometric multibiosensor
1Soldatkin O. O., 1Nazarenko O. A., 2Pavluchenko O. S., 2Kukla O. L., 1Arkhipova V. M., 1Dzyadevych S. V., 1Soldatkin O. P., 1El'skaya A. V.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. V. Ye. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine
    41, Prospect Nauki, Kyiv, Ukraine, 03028


The investigation presents the development of highly sensitive and selective multibiosensor based both on a number of immobilized enzymes as bioselective elements and the matrix of ion-selective field effect transistors as transducers of biochemical signal into the electric one. To develop bioselective elements of multi-biosensor, such enzymes as acetylcholinesterase, butyrylcholin esterase, urease, glucose oxidase, and three-enzyme system (invertase, mutarotase, glucose oxidase) were used. Obtained bioselective elements were shown to demonstrate high sensitivity to corresponding substrates in direct enzymatic analysis, which lasted 10 min. Dynamic range of substrate determination (0.1 mM–1.5– 10 mM) was shown to depend on enzymatic system and to differ specifically in upper threshold. Current work presents the investigation on the dependence of multibiosensor response on pH, ionic strength, and buffer capacity of the solution; optimal conditions for simultaneous operation of all bioselective elements of the multibiosensor were selected; the data on cross-influence of substrate of all enzymes used were obtained. The developed multi-analyzer was shown to demonstrate sufficient signal reproducibility.
Keywords: multibiosensor, immobilized enzymes, ion-selective field transistors, glucose oxidase, direct substrate analysis, inhibitor analysis


[1] Yatsenko V. Determining the characteristics of water pollutants by neural sensors and pattern recognition methods. J Chromatogr A. 1996;722(1-2):233-43.
[2] Castillo J., Gaspar S., Leth S., Niculescu M., Mortari A., Bontiden I., Soukharev V., Dorneanu S. A., Ryabov A. D., Csoregi E. Biosensors for life quality design, development and applications. Sensors and Actuators B: Chemical. 2004. 102(2):179–194.
[3] Gorobets P. YU., Il'chenko I. N., Lyapunov S. M., Shugayeva Ye. N. Prevalence environmentally dependent disorders of mental development in children aged 4-7 years, with chronic exposure to heavy metals in small doses. Profilaktika zabolevaniy i ukrepleniye zdorov'ya. 2005; 1:14—20.
[4] Schuman S. H., Simpson W. M. A clinical historical overview of pesticide health issues. Occup Med. 1997;12(2):203-7.
[5] Johnson B. L. A review of health-based comparative risk assessments in the United States. Rev Environ Health. 2000;15(3):273-87.
[6] Arkhipova V. N., Dzyadevych S. V., Soldatkin A. P., El'skaya A. V., Jaffrezic-Renault N., Jaffresic H., Martlet C. Multibiosensor based on enzyme inhibition analysis for determination of different toxic substances. Talanta. 2001;55(5):919-27.
[7] Verscheuren K. Handbook of environmental data on organic chemicals. New York: Van Norstrand Reinhold, 1983. 673 p.
[8] Dzantiev B. B., Yazynina E. V., Zherdev A. V., Plekhanova Yu. V., Reshetilov A. N., Chang S. C., McNeil C. J. Determination of the herbicide chlorsulfuron by amperometric sensor based on separation-free bienzyme immunoassay. Sensors and Actuators–2004. 98(2-3):254–261.
[9] Sherma J., Zweig G. Pesticides. Anal Chem. 1983;55(5):57R-70R.
[10] Tran-Minh C., Pandey P. C., Kumaran S. Studies on acetylcholine sensor and its analytical application based on the inhibition of cholinesterase. Biosensors & Bioelectronics. 1990; 5(6):461–471.
[11] Soldatkin O. O., Sosovskaya O. F., Benilova I. V., Gonchar M. V., Korpan Y. I. Enzymatic conductometric sensor for formaldehyde detection in model samples. Biopolym. Cell. 2005; 21(5):425-432
[12] Zhylyak G. A., Dzyadevich S. V., Korpan Y. I., Soldatkin A. P., El'skaya A. V. Application of urease conductometric biosensor for heavy-metal ion determination. Sensors and Actuators B: Chemical. 1995. 24(1-3):145–148.
[13] Kukla A.L., Kanjuk N.I., Starodub N. F., Shirshov Yu. M. Multienzyme electrochemical sensor array for determination of heavy metal ions. Sensors and Actuators B: Chemical. 1999; 57(1-3):213–218.
[14] Moreno L., Merlos A., Abramova N., Jimrenez C., Bratov A. Multi-sensor array used as an «electronic tongue» for mineral water analysis. Sensors and Actuators B: Chemical. 2006. 116(1-2):130–134.
[15] Lurie Yu Yu Handbook of Analytical Chemistry. Moscow: Khimiya, 1967. Vol 3. 230.
[16] Soldatkin A. P., El'skaya A. V., Shul'ga A. A., Netchiporouk L. I., Nyamsi Hendji A. M., Jaffrezic-Renault N., Martelet C. Glucose-sensitive field-effect transistor with additional Nafion membrane. Anal. Chim. Acta. 1993. 283(2):695– 701.
[17] Dzyadevich S. V., Arhipova V. A., Soldatkin A. P., El'skaya A. V., Shul'ga A. A. Glucose conductometric biosensor with Potassium hexacyanoferrate(III) as an oxidizing agent. Anal. Chim. Acta. 1998. 374(1):11–18.
[18] Arkhipova VN, Dziadevich SV, Soldatkin AP, El'skaia AV. Enzyme biosensors for penicillin determination based on conductometric planar electrodes and pH-sensitive field effect transistor. Ukr Biokhim Zh. 1996;68(1):26-31.