Biopolym. Cell. 2009; 25(2):85-94.
Plant sulfolipid. III. Role in adaptation
1Kosyk O. I., 1Okanenko A. A., 1Taran N. Yu.
  1. Taras Shevchenko National University of Kyiv
    64, Volodymyrska Str., Kyiv, Ukraine, 01601


The quality and/or relative content of plant sulfoquinovosyl diacylglycerol (SQDG) change in response to a stress action. Various types of stress action induce two types of response – more general to the oxidative stress and specific – to a concrete stress factor. Besides, two types of reaction take place in photosynthesizing and non-photosynthesizing tissues. SQDG molecules take part in the adaptation reaction being cytochrome oxidase, CF1, F1, ATPase regulators, protectors and stabilizing agents for D1/D2 dimers and LHC II. This compound in non-photosynthesising tissues could be connected with negative charge domination required for lipoprotein complex stabilisation. SQDG quantitative changes and acyl composition shifts take place at both abiotic and biotic factors impact.
Keywords: sulfolipid, sulfoquinovosyl diacylglycerol, stress


[1] Pearcy R. Effect of growth temperature on the fatty acid composition of the lipids in Atriplex lentiformis (Torr) Wats Plant Physiol 1978 61, N 4:484–486.
[2] Quartacci M. F., Pinzino C., Sgherri C., Navari-Izzo F. Lipid composition and protein dynamics in thylakoids of two wheat cultivars differently sensitive to drought. Plant Physiol. 1995; 108(1):191–197.
[3] Quinn P. J. The role of lipids in stability of plant membranes Advances in Plant Lipid Research. Eds J. Sanches, E. Gerda-Olmedo, E. Martinez-Force Seville, Univ. Sevilla publ., 1998:361–366.
[4] Taran N. The lipid composition of wheat leaves is an index of plant resistance Advances in Plant Lipid Research. Eds J. Sanches, E. Gerda-Olmedo, E. Martinez-Force Seville, Univ. Sevilla publ., 1998:517–520.
[5] Blee E. Impact of phyto-oxylipins in plant defense Trends Plant Sci 2002 7, N 7:315–321.
[6] Harwood J. L. Environmental factors which can alter lipid metabolism Progr. Lipid Res 1994 33, N 1–2:193–202.
[7] Harwood J. L. Recent environmental concerns and lipid metabolism Plant Lipid Metabolism. Eds J.-C. Kader, P. Mazliak Dordrecht: Kluwer Acad. publ., 1995:361–368.
[8] Asada K., Takahashi M., Tanaka K., Nakamo Y. Formation of active oxygen and its fate in chloroplasts Biochemical and Medical Aspects of Active Oxygen. Eds O. Hayaishi, K. Asada Tokyo: Sc. Soc. press, 1977:45–63.
[9] Alscher R. G., Donahue J. L., Cramer C. L. Molecular responses to reactive oxygen species: multifaceted changes in gene expression Responses of Plant Metabolism to Air Pollution and Global Change. Eds L. J. de Kok, I. Stulen Leiden: Backhuys publ., 1998:233–240.
[10] Senaratna T., McKersie B. D., Stinson R. H. Simulation of dehydration injury to membranes from soybean axes by free radicals Plant Physiol 1985 77, N 2:472–474.
[11] Quartacci M. F., Navari-Izzo F. Water stress and free radical mediated changes in sunflower seedlings J. Plant Physiol 1992 139, N 5:621–625.
[12] Navari-Izzo F., Quartacci M. F., Melfi D., Izzo R. Lipid composition of plasma membranes isolated from sunflower seedlings grown under water stress Physiol. Plant 1993 87, N 4:508–514.
[13] Sakaki T. Photochemical oxidants: toxicity Responses of Plant Metabolism to Air Pollution and Global Change. Eds L. J. de Kok, I. Stulen Leiden: Backhuys publ., 1998:117–129.
[14] Sakaki T., Ohnishi J., Kondo N., Yamada M. Polar and neutral lipid changes in spinach leaves with ozone fumigation. Triacylglycerol synthesis from polar lipids. Plant Cell Physiol. 1985; 26(2):253–262.
[15] Sakaki T., Tanaka K., Yamada M. General metabolic changes in leaf lipids in response to ozone. Plant Cell Physiol. 1994; 35(1):53–62.
[16] Berge J. P., Debiton E., Dumay J., Durand P., Barthomeuf C. In vitro anti-inflammatory and anti-proliferative activity of sulfolipids from the red alga Porphyridium crurentum J. Agric. Food Chem 2002 50, N 21:6227–6232.
[17] Taran N., Batsmanova L., Okanenko A. Oxidation stress induce leaf lipid changes 16th Int. Plant Lipid Symp. (1–4 June 2004 Budapest, Hungary) Budapest, 2004:95–101.
[18] Norman H. A., Mischke C. F., Allen B., Vincentt J. S. Semipreparative isolation of plant sulfoquinovosyldiacylglycerols by solid phase extraction and HPLC procedures. J. Lipid Res. 1996; 37(6):1372–1376.
[19] Harwood J. L. Sulfolipids The Biochemistry of Plants. Eds P. K. Stumpf, E. E. Conn New York: Acad. press, 1980 P. 301–320.
[20] Mock T., Kroon B. M. A. Photosynthetic energy conversion under extreme conditions–II: The significance of lipids under light limited growth in Antarctic sea ice diatoms Phytochemistry 2002 61, N 1:53–60.
[21] Minoda A., Sonoike K., Nozaki H., Okada K., Sato N., Tsuzuki M. Contribution of SQDG in photosystem II of Chlamydomonas reinhardtii. PS2001 Proc. of the 12th Int. Congr. on Photosynthesis (Brisbane, Australia, 2001) Brisbane: CSIRO publ., 2001 S5–039.
[22] Khotimchenko S. V., Yakovleva I. M. Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance Phytochemistry 2005 66, N 1:73–79.
[23] Sato N., Murata N., Miura G., Veta N. Effect of growth temperature on lipid and fatty acid composition in the blue-green algae Anabaena variabilis and Anacystis nidulans Biochim. Biophys. Acta 1979 572, N 1:19–28.
[24] Sato N., Murata N. Temperature shift-induced response in lipid in the blue-green algae Anabaena variabilis. The central role of diacyl monogalactosyl glycerol in thermoadaptation. Biochim. Biophys. Acta. 1980; 619(2):353–366.
[25] Wada H., Murata N. Membrane lipids in Cyanobacteria Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis 6. Eds P.-A. Siegenthaler, N. Murata Amsterdam: Kluwer Acad. publ., 1998:83–101.
[26] Quoc K. P., Dubacq J. P. Effect of growth temperature on the biosynthesis of eukaryotic lipid molecular species by the Cyanobacterium Spirulina platensis Biochim. Biophys. Acta 1997 1346, N 3:237–246.
[27] Okanenko A., Protsenko D. Apple-tree shoot bark lipid composition dynamics. Fiziologiya i biokhimiya kul'turnykh rasteniy. 1977; 9(1):80–85.
[28] Oquist G. Seasonally induced changes in acyl lipids and fatty acids of chloroplast thylakoids of Pinus silvestris. Plant Physiol. 1982 69, N 4:869–875.
[29] Orr G., Raison J. Compositional and thermal properties of thylakoid polar lipids of Nerium oleander L. in relation to chilling sensitivity. Plant Physiol. 1987 84, N 1:88– 92.
[30] Okanenko A., Taran N. High temperature and water deficit action upon winter wheat chloroplast lipid composition Factori sredi i organizatsiya vtorichnogo processa photosynteza. Ed. L. K. Ostrovskaya Kiev: Nauk. Dumka, 1989 P. 120–126.
[31] Murata N., Yamaya J. Temperature-dependent phase behavior of phosphatidyl glycerols from chilling-sensitive and chilling-resistant plants Plant Physiol 1984 74, N 4 P. 1016–1024.
[32] Kenrick J., Bishop D. The fatty acid composition of phosphatidylglycerol and sulfoquinovosyl diacylglycerol of higher plants in relation to chilling sensitivity Plant Physiol 1986 81, N 4:946–948.
[33] Okanenko A., Taran N., Musienko M. The heat and water stress effect on photosynthetic tissue lipid content Botany and Mycology for the Next Millennium. Ed. S. Wasser Kyiv: NASU, 1996:272–281.
[34] Taran N., Okanenko A., Musienko M. Sulfolipid reflects plant resistance to stress-factor action Biochem. Soc. Trans 2000 28, N 6:922–924.
[35] Pancratova S., Karimova F. Irrigation influence upon water exchange and winter rye leaf lipid composition Kazan, Deponed VINITY, 1984 N 5537–84 Dep 7 p.
[36] Okanenko A., Taran N. Impact of heat stress on cereal lipid composition Responses of Plant Metabolism to Air Pollution and Global Change. Eds L. J. de Kok, I. Stulen Leiden: Backhuys publ., 1998:391–394.
[37] Taranto P. A., Keenan T. W., Potts M. Rehydration induces rapid onset of lipid biosynthesis in desiccated Nostoc commune (Cyanobacteria) Biochim. Biophys. Acta 1993 1168, N 2:228–237.
[38] Ivanova A., Nechev J., Evstatieva L., Popov S., Stefanov K. Lipid composition of Calystegia soldanella – a halophytic plant from bulgarian black sea coast. Bulg. J. Plant Physiol.; 2003 Special Issue:394.
[39] Hernandez J. A., Olmos E., Corpas F. J., Sevilla F., del Ryo L. A. Salt-induced oxidative stress in chloroplast of pea plants Plant Sci 1995 105, N 2:151–167.
[40] Hernandez J. A., Jimenez A., Mullineaux P. M., Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses Plant Cell Environ 2000 23, N 8:853–862.
[41] Gosset D. R., Banks S. W., Millhollon E. P., Lucas M. C. Antioxidant response to NaCl stress in a control and an NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione Plant Physiol 1996 112, N 2:803–809.
[42] Hernandez J. A., Ferrer M. A., Jimenez A., Barcely A. R., Sevilla F. Antioxidant systems and O2 /H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins Plant Physiol 2001 127, N 3:817–831.
[43] Savourer A., Thorin D., Davey M., Hua X. J., Mauro S., Van Montagu M., Inzer D., Verbruggen N. NaCl and CuZnSO4 treatments trigger distinct oxidative defense mechanism in Nicotiana plumbaginifolia L. Plant Cell Environ 1999 22, N 4:387–396.
[44] Allakhverdiev S. I., Nishiyama Y., Suzuki I., Tasaka Y., Murata N. Genetic engineering of the unsaturation of fatty acids in membrane lipids alters the tolerance of Synechocystis to salt stress Proc. Natl. Acad. Sci. USA 1999 96, N 10 P. 5862–5867.
[45] Deshnium P., Los D. A., Hayashi H., Mustardy L., Murata N. Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress Plant Mol. Biol 1995 29, N 5:897–907.
[46] Muller M., Santarius K. A. Changes in chloroplast membrane lipids during adaptation of barley to extreme salinity Plant Physiol 1978 62, N 3:326–329.
[47] Kuiper P. J. C., Kahr M., Stuiver C. E. E., Kylin A. Lipid composition of whole roots and Ca2+, Mg2+-activated adenosine triphosphatases from wheat and oat as related to mineral nutrition Physiol. Plant 1974 32, N 1:33– 36.
[48] Kylin A., Kahr M. The effect of magnesium and calcium ions on adenosine triphosphatases from wheat and oat roots at different pH Physiol. Plant 1973 28, N 3:452–457.
[49] Stuiver C. E. E., de Kok L. J., Santers J. M. O., Kuiper P. J. C. The effect of Na2SO4 on the lipid composition of sugar beet plants Z. Pflanzenphysiol 1984 114, N 2:187–191.
[50] Pick U., Gounaris K., Weiss M., Barber J. Tightly bound sulfolipids in chloroplast CF0–CF1 Biochim. Biophys. Acta 1985 808, N 3:415–420.
[51] Huflejt M. E., Tremolieres A., Pineau B., Lang J. K., Hatheway J., Packer L. Changes in membrane lipid-composition during saline growth of the fresh-water Cyanobacterium synechococcus-6311 Plant Physiol 1990 94, N 4 P. 1512–1521.
[52] Lattanzio V. M. T., Corcelli A., Mascolo G., Oren A. Presence of two novel cardiolipins in the halophilic archaeal community in the crystallizer brines from the salterns of Margherita di Savoia (Italy) and Eilat (Israel) Extremophiles 2002 6, N 6:437–444.
[53] Zhang H. X., Hodson J. N., Williams J. P., Blumwald E. Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation Proc. Natl. Acad. Sci. USA 2001 98, N 22 P.12832–12836.
[54] Ramani B., Papenbrock J., Schmidt A. Connecting sulfur metabolism and salt tolerance mechanisms in the halophytes Aster tripolium and Sesuvium portulacastrum. Trop. Ecol. 2004; 45(1):173–182.
[55] Ramani B., Zorn H., Papenbrock J. Quantification and fatty acid profiles of sulfolipids in two halophytes and a glycophyte grown under different salt concentrations. Z. Naturforsch. Sect. C 2004; 59(11/12):835–842.
[56] Bloem E., Riemenschneider A., Volker J., Papenbrock J., Schmidt A., Salac I., Haneklaus S., Schnug E. Sulphur supply and infection with Pyrenopeziza brassica influence Lcysteine desulfhydrase activity in Brassica napus L. J. Exp. Bot 2004 55, N 406:2305–2312.
[57] Pyurko O. Ye., Okanenko O. A., Taran N. Yu., Musienko M. M. Salt tolerance and plant sulpholipid. Visnyk (Herald) of Kyiv National University. Biology. 2002; 38:34–36.
[58] Harwood J. L. Membrane lipids in algae Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis 6. Eds P.-A. Siegenthaler, N. Murata Amsterdam: Kluwer Acad. publ., 1998:53–64.
[59] Youssef N. B., Zarrouk M., Daoud D., Lemal F., Ouariti O., Ghorbal M. H., Cherif A. Membrane lipid changes in Brassica napus induced by cadmium chloride Advances in Plant Lipid Research. Eds J. Sanches, E. Gerda-Olmedo, E. Martinez-Force Seville: Univ. Sevilla publ., 1998:534–537.
[60] Okanenko A., Taran N., Kosyk O. Sulphoquinovosyldiacylglycerol and adaptation syndrome Advantes Research of Plant Lipids: Proc. of the 15th Int. Symp. on Plant Lipid. (Japan) Okazaki: Kluwer Acad. publ., 2003:361–364.
[61] Sato N., Hagio M., Wada H., Tsuzuki M. Environmental effects on acidic lipids of thylakoid membranes Biochem. Soc. Trans 2000 28, N 6:912–914.
[62] Guschina I. A., Harwood J. L. Lipid metabolism in the moss Rhytidiadelphus squarrosus (Hedw) Warnst. from lead-contaminated and non-contaminated populations J. Exp. Bot 2002 53, N 368:455–463.
[63] Orozco-Cardenas M., Ryan C. A. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway Proc. Natl. Acad. Sci. USA 1999 96, N 11:6553–6557.
[64] Senchugova N. A., Taran N. Yu., Okanenko A. A. Virus impact upon bean photosynthesising tissue lipid composition Arch. Phytopath. Pflanz 1999 32, N 6:471–477.
[65] Ohta K., Mizushina Y., Hirata N., Takemura M., Sugawara F., Matsukage A., Yoshida S., Sakaguchi K. Sulfoquinovosyldiacylglycerol, KM043, a new potent inhibitor of eukaryotic DNA polymerases and HIV-reverse transcriptase type I from a marine red alga, Gigartina tenella Chem. Pharm. Bull. (Tokyo) 1998 46, N 4:684–686.
[66] Ohta K., Hanashima S., Mizushina Y., Yamazaki T., Saneyoshi M., Sugawara F., Sakaguchi K. Studies on a novel DNA polymerase inhibitor group, synthetic sulfoquinovosylacylglycerols: inhibitory action on cell proliferation Mutat. Res Genet. Toxicol. Environ. Mutagen 2000 467, N 2 P. 139–152.
[67] Fodor J., Hideg E., Kecskes A., Kiraly Z. In vivo detection of tobacco mosaic virus-induced local and systemic oxidative burst by electron paramagnetic resonance spectroscopy Plant Cell Physiol 2001 42, N 7:775–779.
[68] Hernandez J. A., Talavera J. M., Martynez-Gomez P., Dicenta F., Sevilla F. Response of antioxidant enzymes to plum pox virus in two apricot cultivars Physiol. Plant 2001 111, N 3:313–321.
[69] Adam A., Nagy P. D. Variations of membrane polar lipids of barley leaves infected with three strains of barley stripe mosaic virus and with poa semilatent virus. Plant Sci 1989 61, N 1:53–59.
[70] Livn A., Racker E. Partial resolution of the enzymes catalyzing photophosphorylation. V. Interaction of coupling factor I from chloroplasts with ribonucleic acid and lipids. J. Biol. Chem. 1969; 244(5):1332–1338.
[71] Vijayan P., Routaboul J.-M., Browse J. A genetic approach to investigating membrane lipid structure and photosynthetic function Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis 6. Eds P.-A. Siegenthaler, N. Murata Amsterdam: Kluwer Acad. publ., 1998:263–285.
[72] Kruijff B. de, Pilon R., Hof R., van't., Demel R. Lipid-protein interactions in chloroplast protein import Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis 6. Eds P.-A. Siegenthaler, N. Murata Amsterdam: Kluwer Acad. publ., 1998:191–208.
[73] Vishwanath B. S., Eichenberger W., Frey F. J., Frey B. M. Interaction of plant lipids with 14 kDa phospholipase A2 enzymes. Biochem. J. 1996; 320(1):93–99.
[74] Shipley G. G., Green J. P., Nichols B. W. The phase behavior of monogalactosyl, digalactosyl, and sulphoquinovosyl diglycerides Biochim. Biophys. Acta 1973 311, N 4 P. 531–544.
[75] Coves J., Joyard J., Douce R. Lipid requirement and kinetic studies of solubilized UDP-galactose: diacylglycerol galactosyltransferase activity from spinach chloroplast envelope membranes Proc. Nat. Acad. Sci. USA 1988 85, N 11 P. 4966–4970.
[76] Li L., Karlsson O. P., Wieslander A. Activating amphiphiles cause a conformational changes of the 1,2-diacylglycerol transferase from Acholeplasma laidlavii membranes according to proteolytic digestion J. Biol. Chem 1997 272, N 47:29602–29606.
[77] De Vitry C., Ouyang Y., Finazzi G., Wollman F.-A., Kallas T. The chloroplast Rieske iron-sulfur protein at the crossroad of electron transport and signal transduction J. Biol. Chem 2004 279, N 43:44621–44627.
[78] Kettunen R., Tyystjarvi E., Aro E. M. Degradation pattern of photosystem II reaction center protein D1 in intact leaves. The major photoinhibition-induced cleavage site in D1 polypeptide is located amino terminally of the DE loop Plant Physiol 1996 111, N 4:1183–1190.