Biopolym. Cell. 2009; 25(2):115-119.
Molecular and Cell Biotechnologies
Detection of Methylobacterium radiotolerans IMBG290 in potato plants by in situ hybridization
1Podolich O. V., 2Ovcharenko L. P., 2Kozyrovska N. O., 3Pirttila A. M.
  1. Institute of Agroecology of NAAS
    12 Metrologichna Str., Kyiv, Ukraine, 03680
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  3. Department of Biology University of Oulu
    Linnanmaa, PO Box 3000, FIN-90014 Oulu, Finland


A new bacterial strain of pink-pigmented facultative methylotroph (M. radiotolerans IMBG290) which was previously isolated from in vitro grown potato plantlets after their inoculation with Pseudomonas fluorescens IMBG163 was detected in tissues by in situ hybridization method (ISH/FISH). The presence of Methylobacterium rRNA was observed in leaves and stems of potato plantlets, whereas no signal was detected in potato roots. The signal was less abundant in the untreated plants than in the plantlets infected with M. radiotolerans IMBG290.
Keywords: in situ hybridization, Methylobacterium radiotolerans IMBG290, potato plantlets


[1] Corpe W. A. A method for detecting methylotrophic bacteria on solid surfaces J. Microbiol. Meth 1985 3, N 1:215–221.
[2] Romanovskaya V. A., Stolyar S. M., Malashenko Y. R., Dodatko T. N. The ways of plant colonization by Methylobacterium strains and properties of these bacteria Microbiology 2001 70, N 1:221–227.
[3] Corpe W. A., Basil D. V. Methanol-utilizing bacteria, associated with green plants. Develop. Indust. Microbiol. 1982; 23(2):483–493.
[4] Wilson M., Hirano S. S., Lindow S. E. Location and survival of leaf-associated bacteria in relation to pathogenicity and potential for growth within the leaf. Appl. Environ. Microbiol. 1999; 65(4):1435–1443.
[5] Pirttila A. M., Laukkanen H., Pospiech H., Myllyla R., Hohtola A. Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization Appl. Environ. Microbiol 2000 66, N 7:3073–3077.
[6] Pirttila A. M., Pospiech H., Laukkanen H., Myllyla R., Hohtola A. Seasonal variations in location and population structure of endophytes in buds of Scots pine Tree Physiol 2005 25, N 3:289–297.
[7] Sy A., Giraud E., Jourand P., Garcia N., Willems A., de Lajudie P., Prin Y., Neyra M., Gillis M., Boivin-Masson C., Dreyfus B. Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes J. Bacteriol 2001 183, N 1:214–220.
[8] Idris R., Trifonova R., Puschenreiter M., Wenzel W., Sessitsch A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense Appl. Environ. Microbiol 2004 70, N 5:2667–2677.
[9] Ivanova E. G., Doronina N. V., Shepelyakovskaya O., Laman A. G., Brovko E. A., Trotsenko Y. A. Facultative and obligate aerobic methylobacteria synthesize cytokinins. Mikrobiologiia. 2000; 69(3):764–769.
[10] Ivanova E. G., Doronina N. V., Trotsenko Y. A. Aerobic methylobacteria are capable of synthesizing auxins. Microbiologiya. 2001; 70(4):452-8.
[11] Araujo W. L., Marcon J., Maccheroni W. Jr., Van Elsas J. D., Van Vuurde J. W., Azevedo J. L. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants Appl. Environ. Microbiol 2002 68, N 10:4906–4914.
[12] Madhaiyan M., Poonguzhali S., Senthilkumar M., Seshadri S., Chung H., Yang J., Sundaram S., Tongmin S. A. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot. Bull. Acad. Sin. 2004; 45(2):315–324.
[13] Maliti C. M., Basile D. V., Corpe W. A. Effects of Methylobacterium spp. strains on rice Oryza sativa L. callus induction, plantlet regeneration, and seedlings growth in vitro J. Torrey Bot. Soc 2005 132, N 2:355–327.
[14] Kayser M. F., Ucurum Z., Vuilleumier S. Dichloromethane metabolism and C-1 utilization genes in Methylobacterium strains. Microbiology. 2002; 148(6):1915–1922.
[15] Van Aken B., Yoon J. M., Schnoor J. L. Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1, 3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides nigra DN34) Appl. Environ. Microbiol 2004 70, N 1:508– 517.
[16] Garbeva P., Overbeek L. S., Vuurde J. W., Elsas J. D. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments Microbiol. Ecol 2001 41, N 2:369–383.
[17] Krechel A., Faupel A., Hallmann J., Ulrich A., Berg G. Potato-associated bacteria and their antagonistic potential towards plant-pathogenic fungi and the plant-parasitic nematode Meloidogyne incognita (Kofoid & White) Chitwood Can. J. Microbiol 2002 48, N 3:772–786.
[18] Sessitsch A., Reiter B., Berg G. Endophytic bacterial communities of field-grown potato plants and their plantgrowth-promoting and antagonistic abilities Can. J. Microbiol 2004 50, N 1:239–249.
[19] Podolich O. V., Ardanov P. E., Voznyuk T. M., Kovalchuk M. V., Danylchenko O. O., Laschevskyi V. V., Lyastchenko S. A., Kozyrovska N. O. Endophytic bacteria from potato in vitro activated by exogenic non-pathogenic bacteria Biopolym. Cell 2007 23, N 1:21–27.
[20] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97.
[21] Miller J. H. Experiments in molecular genetics New York: Cold Spring Harbor Lab. publ., 1972 436 p.
[22] Edwards U., Rogal T., Bloecker M., Boettger E. C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA Nucl. Acid Res 1989 17, N 19:7843–7853.
[23] Sanger F., Nicken S., Coulson A. R. DNA sequencing with chain-terminating inhibitors Proc. Nat. Acad. Sci. USA 1977 74, N :5463–5467.
[24] Leifert C., Morris C. E., Waites W. M. Ecology of microbial saprophytes and pathogens in tissues culture and field grown plants: reasons for contamination problem in vitro Crit. Rev. Plant Sci 1994 3:139–183.
[25] Kelley S. T., Theisen U., Angenent L. T., Amand A., Pace N. R. Molecular analysis of shower curtain biofilm microbes Appl. Environ. Microbiol 2004 70, N 7:4187–4192.
[26] Morris C. E., Monier J. M., Jacques M. A. Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Appl. Environ. Microbiol. 1997; 63(4):1570–1576.
[27] Reinhold-Hurek B., Hurek T., Fendrik I. Cross-reaction of predominant nitrogen-fixing bacteria with enveloped, round bodies in the root interior of kallar grass. Appl. Environ. Microbiol. 1987; 53(4):889–891.
[28] Nguyen T., Ton T., Tarasenko V., Kozyrovska N. Nitrogenfixing bacteria colonize xylem of rice root Biopolym. Cell 1989 5, N 2:97–99 (Rus.).
[29] James E. K., Olivares F. B. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs Crit. Rev. Plant Sci 1997 17:77–119.
[30] Gyaneshwar P., James E. K., Mathan N., Reddy P. M., Reinhold-Hurek B., Ladha J. K. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens J. Bacteriol 2001 183, N 8:2634–2645.
[31] Compant S., Reiter B., Sessitsch A., Nowak J., Clement C., Barka E. A. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN Appl. Environ. Microbiol 2005 71, N 4:1685– 1693.
[32] Quandt-Hallmann A., Kloepper J. W. Immunological detection and localization of the cotton endophyte Enterobacter asburiae JM22 in different plant species Can. J. Microbiol 1996 42, N 6:1144–1154.
[33] Reinhold-Hurek B., Hurek T. Interactions of gramineous plants with Azozrcus spp. and other diazotrophs: Identification, localization and perspectives to study their function Crit. Rev. Plant Sci 1998 17:29–54.
[34] Quadt-Hallmann A., Hallmann J., Kloepper J. W. Bacterial endophytes in cotton: location and interaction with other plant-associated bacteria Can. J. Microbiol 1997 43, N 2:254–259.