Biopolym. Cell. 2010; 26(4):273-278.
Genomics, Transcriptomics and Proteomics
Bone-specific master transcription factor Runx2 regulates signaling and metabolism related programs in osteoprogenitors
1, 2Teplyuk N. M., 2Teplyuk V. I.
  1. University of Massachusetts Medical School
    55, Lake Ave North, 01655, Worcester, MA, USA
  2. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680


Aim. Runx2 (AML3) transcription factor is the key regulator of osteoblastic lineage progression and is indispensable for the formation of mineral bones. Runx2 expression increases during differentiation of osteoblasts to induce osteoblast-specific genes necessary for the production and deposition of bone mineral matrix. However, Runx2 is also expressed at a lower level in early osteoprogenitors, where its function is less understood. Here we study how Runx2 determines the early stages of osteoblastic commitment using the model system of Runx2 re-introduction in mouse calvaria cells with Runx2 null background. Method. Affymetrix analysis, Western blot analysis and quantitative real-time reverse transcriptase PCR (qRT-PCR) analysis were employed. Results. Gene expression profiling by Affymetrix microarrays revealed that along with the induction of extracellular matrix and bone mineral deposition related phenotypic markers, Runx2 regulates several cell programs related to signaling and metabolism in the early osteoprogenitors. Particularly, Runx2 regulates transcription of genes involved in G-protein coupled signaling network, FGF and BMP/TGF beta signaling pathways and in biogenesis and metabolism pathways of steroid hormones. Conclusion. The data indicate that the lineage specific program, regulated by the master regulatory transcription factor, includes the regulation of cellular signaling and metabolism which may allow the committed cell to react and behave differently in the same microenvironment.
Keywords: osteoblast progenitors, Runx2, signaling


[1] Komori T., Yagi H., Nomura S., Yamaguchi A., Sasaki K., Deguchi K., Shimizu Y., Bronson R. T., Gao Y. H., Inada M., Sato M., Okamoto R., Kitamura Y., Yoshiki S., Kishimoto T. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts Cell 1997 89, N 5:755–764.
[2] Nakashima K., Zhou X., Kunkel G., Zhang Z., Deng J. M., Behringer R. R., de Crombrugghe B. The novel zinc fingercontaining transcription factor osterix is required for osteoblast differentiation and bone formation Cell 2002 108, N 1:17–29.
[3] Lian J. B., Stein J. L., Stein G. S., van Wijnen A. J., Montecino M., Javed A., Gutierrez S., Shen J., Zaidi S. K., Drissi H. Runx2/Cbfa1 functions: diverse regulation of gene transcription by chromatin remodeling and co-regulatory protein interactions Connect Tissue Res 2003 44, Suppl. 1 P. 141–148.
[4] Bae J. S., Gutierrez S., Narla R., Pratap J., Devados R., van Wijnen A. J., Stein J. L., Stein G. S., Lian J. B., Javed A. Reconstitution of Runx2/Cbfa1-null cells identifies a requirement for BMP2 signaling through a Runx2 functional domain during osteoblast differentiation J. Cell Biochem 2007 100, N 2:434–449.
[5] Teplyuk N. M., Galindo M., Teplyuk V. I., Pratap J., Young D. W., Lapointe D., Javed A., Stein J. L., Lian J. B., Stein G. S., van Wijnen A. J. Runx2 regulates G protein-coupled signaling pathways to control growth of osteoblast progenitors J. Biol. Chem 2008 283, N 41:27585–27597.
[6] Dennis G. Jr., Sherman B. T., Hosack D. A., Yang J., Gao W., Lane H. C., Lempicki R. A. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003 4, N 5:3.
[7] Turner P. R., Mefford S., Christakos S., Nissenson R. A. Apoptosis mediated by activation of the G protein-coupled receptor for parathyroid hormone (PTH)/PTH-related protein (PTHrP) Mol. Endocrinol 2000–14, N 2:241–254.
[8] Roy A. A., Nunn C., Ming H., Zou M. X., Penninger J., Kirshenbaum L. A., Dixon S. J., Chidiac P. Up-regulation of endogenous RGS2 mediates cross-desensitization between Gs and Gq signaling in osteoblasts J. Biol. Chem 2006 281, N 43:32684–32693.
[9] Kronenberg H. M. PTHrP and skeletal development Ann. N. Y. Acad. Sci 2006 1068:1–13.
[10] Jackson R. A., Nurcombe V., Cool S. M. Coordinated fibroblast growth factor and heparan sulfate regulation of osteogenesis Gene 2006 379, N 1:79–91.
[11] De Cat B., Semin D. G. Developmental roles of the glypicans Cell Develop. Biol 2001 12, N 2:117–125.
[12] Lamanna W. C., Kalus I., Padva M., Baldwin R. J., Merry C. L., Dierks T. The heparanome – the enigma of encoding and decoding heparan sulfate sulfation J. Biotechnol 2007 129, N 2:290–307.
[13] Soltanoff C. S., Yang S., Chen W., Li Y. P. Signaling networks that control the lineage commitment and differentiation of bone cells Crit. Rev. Eukaryot. Gene Exp 2009 19, N 1 P. 1–46.