Biopolym. Cell. 2010; 26(4):322-326.
Short Communications
Comparative analysis of human and mammalias genes of protein ortologs of cytochrome P450 2E1
1Duplij D. R., 1Maksymchuk O. V., 2Duplij V. P., 1Chaschin N. A.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03680
  2. Institute of Cell Biology and Genetic Engineering, NAS of Ukraine
    148, Akademika Zabolotnogo Str., Kyiv, Ukraine, 03680


Aim. To carry out a comparison analysis of nucleotide sequences for the cytochrome P450 2E1 protein ortologs genes and reestablish the connection of gene evolution with nucleotide content. Methods. In silico: BLAST, ClustalW, MEGA4, PHP. Results. A general phylogeny of CYP2E1 genes is described. The most affinity is found for human translated sequences with Pan troglodytes. The transition C > T is the most often, it occurs in introns by 2.6 times more than in exons. The correlation of keto-amino skew of CYP2E1 genes and evolution age of species is stated. Conclusions. The analysis carried out in the paper allows us to assume that a common ancestor of the CYP2E1 protein isoform lived before the divergence between rodent and Primates orders, i.e. 70 million years ago. The single nucleotide substitution is accumulated in introns during evolution.
Keywords: cytochrome Р450 2Е1, CYP2E1, transition, phylogeny, nucleotide composition skew


[1] Chen Q., Galleano M., Cederbaum A. I. Cytotoxicity and apoptosis produced by arachidonic acid in HepG2 cell overexpressing human cytochrome P4502E1 J. Biol. Chem 1997 272, N 23:14532–14541.
[2] Wu D., Cederbaum A. I. Oxidative stress mediated toxicity exerted by ethanol-inducible CYP2E1 Toxicol. Appl. Pharmacol 2005 207, N 2 (suppl.):70–76.
[3] Botto F., Seree E., el Khyari S., de Sousa G., Massacrier A., Placidi M., Cau P., Pellet W., Rahmani R., Barra Y. Tissue specific expression and methylation of the human CYP2E1 gene Biochem. Pharmacol 1994 48, N 6:1095–1103.
[4] Danko I. M., Chaschin N. A. Association of CYP2E1 gene polymorphism with predisposition to cancer development. Exp. Oncol. 2005; 27, N 4:248–256.
[5] Sidorik L, Kyyamova R., Bobyk V., Kapustjan L., Rozhko O., Vigontina O., Ryabenko D., Danko I., Maksymchuk O., Kovalenko L., Chaschin N. Molecular chaperon, HSP60, and cytochrome P450 2E1 co-expression in dilated cardiomyopathy Cell Biol. Int 2005 29, N 1:51–55.
[6] Maksymchuk O. V., Bobyk V. I., Sydoryk L. L., Chashchyn M. O. Influence of long-term combined gamma-radiation and ethanol on cytochrome P450 2E1 expression in the mice liver. Ukr. Biokhim. Zh. 2008; 80, N 5:105–111.
[7] Danko I. M., Odynets K. A., Kitam V. O., Chaschin N. A. Computer modeling of cytochrome P450 2E1 three-dimensional structure. Ukr. Biokhim. Zh. 2006; 78, N 2 P. 154–162.
[8] Nelso D. R. Strobel H. W. Evolution of cytochrome P450 proteins. Mol. Biol. Evol. 1987; 4, N 6:572–593.
[9] Web-resource:
[10] Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J. Mol. Biol. 1990; 215, N3:403–410.
[11] Larkin M. A, Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., Lopez R., Thompson J. D., Gibson T. J., Higgins D. G. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23, N 21:2947–2948.
[12] Koterov D. V., Kostarev A. F. PHP 5 v podlinnike SanktPetersburg: BHV, 2006 1120 p.
[13] Tamura K., Dudley J., Nei M., Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0 Mol. Biol. Evol 2007 24, N 8:1596–1599.