Biopolym. Cell. 2011; 27(1):47-52.
Molecular and Cell Biotechnologies
Nano-scale liposomal container with a «signal system» for substances delivering in living cells
1Yefimova S. L., 1Lebed A. S., 1Guralchuk G. Ya., 1Sorokin A. V., 2Kurilchenko I. Yu., 1Kavok N. S., 1Malyukin Yu. V.
  1. Institute for Scintillation Materials, NAS of Ukraine
    60, Lenin Ave., Kharkiv, Ukraine, 61001
  2. Slovyans'k State Pedagogical University
    19, Batyuka Str., Slovyans'k, Ukraine, 84116


The aim of this research is to study the possibility to supply the nano-scale liposomal «container», used for the targeted substance delivery inside the living cells, with a «signal system» to trace the liposome fate in real time. Methods. For this purpose, the methods of fluorescence microscopy, fluorescence spectroscopy and microspectroscopy have been used. Results. The cellular uptake of hydrophobic fluorescent probes DiO and DiI, preloaded in phosphatidylcholine (PC) liposomes, in real time has been studied using fluorescence resonance energy transfer (FRET) from the donor probe DiO to the acceptor one DiI. It has been revealed that after 3 hours incubation of hepatocytes with FRET liposomes, the FRET signal almost disappears, whereas DiO fluorescence becomes very intensive. Conclusions. The loss of FRET signal could be used as a «signal system» to monitor the cell-liposome fusion and delivery of any active compounds to cells.
Keywords: liposomes, fluorescent probes, cells, fluorescence resonance energy transfer


[1] Torchilin V., Weissig V. Liposomes. A practical approach series Oxford: Univ. press, 2003 396 p.
[2] Kozubek A., Gubernator J., Przeworska E., Stasiuk M. Liposomal drug delivery, a novel approach: PLARosomes Acta Biochim. Pol 2000 47, N 3 P. 639–649.
[3] Goyal P., Goyal K., Vijaya Kumar S. G., Singh A., Katare O. P., Mishra D. N. Liposomal drug delivery systems – clinical applications Acta Pharm 2005 55, N 1 P. 1–25.
[4] Hauglang R. P. Handbook of fluorescent probes and research products New York: Molecular probes, 2002 966 p.
[5] Lakowicz J. R. Principles of fluorescence spectroscopy New York: Plenum press, 1999 725 p.
[6] Chen H., Kim S., He W., Wang H., Low P. S., Park K., Cheng J.-X. Fast release of lipophilic agents from circulating PEGPDLLA micelles revealed by in vivo Forster resonance energy transfer imaging Langmuir 2008 24, N 10 P. 5213– 5217.
[7] Chen H., Kim S., Li L., Wang S., Park K., Cheng J.-X. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging Proc. Natl Acad. Sci. USA 2008 105, N 18 P. 6596–6601.
[8] Mui B., Chow L., Hope M. J. Extrusion technique to generate liposomes of defined size Meth. Enzymol 2003 367 P. 3–14.
[9] Petrenko A., Sukach A. N., Roslyakov A. D. Isolation of rat hepatocytes by a nonenzymatic method: detoxifying and respiratory activity Biokhimiia 1991 56, N 9 P. 1647–1651.
[10] Loura L. M. S., Fedorov A., Prieto M. Partition of membrane probe in a gel/fluid two-component lipid system: a fluorescence resonance energy transfer study Biochim. Biophys. Acta 2000 1467, N 1 P. 101–112.
[11] Lebed' A. S., Yefimova S. L., Guralchuk G. Ya., Sorokin A. V., Borovoy I. A., Malyukin Yu. V. Effect of hydrophobicity of cationic carbocyanine dyes DiOCn on their binding to anionic surfactant micelles J. Appl. Spectrosc 2010 77, N 2 P. 183–188.
[12] Kaplun A. P., Son L. B., Krasnopol'skii Yu. M., Shvets V. I. Liposomes and other nanoparticles as drug delivery systems Vopr. Med. Khim 1999 45, N 1 P. 3–12.