Biopolym. Cell. 2012; 28(1):3-13.
Gene targeting in melanoma therapy: exploiting of surface markers and specific promoters
1Alekseenko I. V., 1Zinovyeva M. V., 1, 2Pleshkan V. V., 1, 2Sverdlov E. D.
  1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS
    16/10, Miklukho-Maklaya, Moscow, Russian Federation, 117997
  2. Institute of Molecular Genetics RAS
    2, Kurchatov Sq., Moscow, Russian Federation, 123182


One of the problems of gene therapy of melanoma is effective expression of therapeutic gene in tumor cells and their metastases but not in normal cells. In this review, we will consider a two-step approach to a highly specific gene therapy. At the first step, therapeutic genes are delivered specifically to tumor cells using cell surface markers of melanoma cells as targets. At the second step, a specific expression of the therapeutic genes in tumor cells is ensured. Surface markers of melanoma cells were analyzed as potential targets for therapeutic treatment. Criteria for choosing the most promising targets are proposed. The use of specific melanoma promoters allows to further increase the specificity of treatment via transcriptional control of therapeutic gene expression in melanoma cells.
Keywords: gene therapy, cell surface markers, melanoma-specific promoters, melanoma


[1] Atallah E., Flaherty L. Treatment of metastatic malignant melanoma. Curr. Treat. Options Oncol 2005 6, N 3:185–193.
[2] Ganesan P., Bakhshi S. Systemic therapy for melanoma. Natl Med. J. India 2010 23, N 1:21–27.
[3] Robson T., Hirst D. G. Transcriptional targeting in cancer gene therapy. J. Biomed. Biotechnol 2003 2003, N 2:110–137.
[4] Saukkonen K., Hemminki A. Tissue-specific promoters for cancer gene therapy. Expert Opin. Biol. Ther 2004 4, N 5:683–696.
[5] Haass N. K., Smalley K. S. Melanoma biomarkers: current status and utility in diagnosis, prognosis, and response to therapy. Mol. Diagn. Ther 2009 13, N 5:283–296.
[6] Agarwala S. S. Novel immunotherapies as potential therapeutic partners for traditional or targeted agents: cytotoxic T-lymphocyte antigen-4 blockade in advanced melanoma. Melanoma Res 2010 20, N 1:1–10.
[7] Boon T., van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J. Exp. Med 1996 183, N 3:725–729.
[8] Vujanovic L., Butterfield L. H. Melanoma cancer vaccines and anti-tumor T cell responses. J. Cell. Biochem 2007 102, N 2:301–310.
[9] Brichard V. G., Herman J., Van Pel A., Wildmann C., Gaugler B., Wolfel T., Boon T., Lethe B. A tyrosinase nonapeptide presented by HLA-B44 is recognized on a human melanoma by autologous cytolytic T lymphocytes. Eur. J. Immunol 1996 26, N 1:224–230.
[10] Coulie P. G., Brichard V., Van Pel A., Wolfel T., Schneider J., Traversari C., Mattei S., De Plaen E., Lurquin C., Szikora J. P., Renauld J. C., Boon T. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J. Exp. Med 1994 180, N 1:35–42.
[11] Bakker A. B., Schreurs M. W., de Boer A. J., Kawakami Y., Rosenberg S. A., Adema G. J., Figdor C. G. Melanocyte lineagespecific antigen gp100 is recognized by melanoma-derived tumor-infiltrating lymphocytes. J. Exp. Med 1994 179, N 3:1005–1009.
[12] Ohsie S. J., Sarantopoulos G. P., Cochran A. J., Binder S. W. Immunohistochemical characteristics of melanoma. J. Cutan. Pathol 2008 35, N 5:433–444.
[13] Arenberger P., Arenbergerova M., Gkalpakiotis S., Lippert J., Stribrna J., Kremen J. Multimarker real-time reverse transcription-PCR for quantitative detection of melanoma-associated antigens: a novel possible staging method. J. Eur. Acad. Dermatol. Venereol 2008 22, N 1:56–64.
[14] Simpson A. J., Caballero O. L., Jungbluth A., Chen Y. T., Old L. J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 2005 5, N 8:615–625.
[15] Feng Y., Gao J., Yang M. When MAGE meets RING: insights into biological functions of MAGE proteins. Protein Cell 2, N 1:7–12.
[16] Boel P., Wildmann C., Sensi M. L., Brasseur R., Renauld J. C., Coulie P., Boon T., van der Bruggen P. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 1995 2, N 2:167–175.
[17] Rimoldi D., Rubio-Godoy V., Dutoit V., Lienard D., Salvi S., Guillaume P., Speiser D., Stockert E., Spagnoli G., Servis C., Cerottini J. C., Lejeune F., Romero P., Valmori D. Efficient simultaneous presentation of NY-ESO-1/LAGE-1 primary and nonprimary open reading frame-derived CTL epitopes in melanoma. J. Immunol 2000 165, N 12:7253–7261.
[18] Velazquez E. F., Jungbluth A. A., Yancovitz M., Gnjatic S., Adams S., O'Neill D., Zavilevich K., Albukh T., Christos P., Mazumdar M., Pavlick A., Polsky D., Shapiro R., Berman R., Spira J., Busam K., Osman I., Bhardwaj N. Expression of the cancer/ testis antigen NY-ESO-1 in primary and metastatic malignant melanoma (MM)-correlation with prognostic factors. Cancer Immun 2007 7:11–17.
[19] Gure A. O., Tureci O., Sahin U., Tsang S., Scanlan M. J., Jager E., Knuth A., Pfreundschuh M., Old L. J., Chen Y. T. SSX: a multigene family with several members transcribed in normal testis and human cancer. Int. J. Cancer 1997 72, N 6:965–971.
[20] Caballero O. L., Chen Y. T. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sci 2009 100, N 11:2014–2021.
[21] Bosserhoff A. K., Echtenacher B., Hein R., Buettner R. Functional role of melanoma inhibitory activity in regulating invasion and metastasis of malignant melanoma cells in vivo. Melanoma Res 2001 11, N 4:417–421.
[22] Perez R. P., Zhang P., Bosserhoff A. K., Buettner R., Abu-Hadid M. Expression of melanoma inhibitory activity in melanoma and nonmelanoma tissue specimens. Hum. Pathol 2000 31, N 11:1381–1388.
[23] Godet Y., Moreau-Aubry A., Guilloux Y., Vignard V., Khammari A., Dreno B., Jotereau F., Labarriere N. MELOE-1 is a new antigen overexpressed in melanomas and involved in adoptive T cell transfer efficiency. J. Exp. Med 2008 205, N 11:2673–2682.
[24] Rogel A., Vignard V., Bobinet M., Labarriere N., Lang F. A long peptide from MELOE-1 contains multiple HLA class II T cell epitopes in addition to the HLA-A*0201 epitope: an attractive candidate for melanoma vaccination. Cancer Immunol. Immunother 2011 60, N 3:327–337.
[25] Barrow C., Browning J., MacGregor D., Davis I. D., Sturrock S., Jungbluth A. A., Cebon J. Tumor antigen expression in melanoma varies according to antigen and stage. Clin. Cancer Res 2006 12, N 3, Pt 1:764–771.
[26] Kluger H. M., Hoyt K., Bacchiocchi A., Mayer T., Kirsch J., Kluger Y., Sznol M., Ariyan S., Molinaro A., Halaban R. Plasma markers for identifying patients with metastatic melanoma. Clin. Cancer Res. 2011; 17(8):2417–2425.
[27] Kwong L., Chin L., Wagner S. N. Growth factors and oncogenes as targets in melanoma: lost in translation?. Adv. Dermatol 2007 23:99–129.
[28] O’Connell M. P., Weeraratna A. T. Hear the Wnt Ror: how melanoma cells adjust to changes in Wnt. Pigment Cell Melanoma Res 2009 22, N 6:724–739.
[29] Gantz I., Konda Y., Tashiro T., Shimoto Y., Miwa H., Munzert G., Watson S. J., DelValle J., Yamada T. Molecular cloning of a novel melanocortin receptor. J. Biol. Chem 1993 268, N 11:8246–8250.
[30] Salazar-Onfray F., Lopez M., Lundqvist A., Aguirre A., Escobar A., Serrano A., Korenblit C., Petersson M., Chhajlani V., Larsson O., Kiessling R. Tissue distribution and differential expression of melanocortin 1 receptor, a malignant melanoma marker. Br. J. Cancer 2002 87, N 4:414–422.
[31] Roberts D. W., Newton R. A., Beaumont K. A., Helen L. J., Sturm R. A. Quantitative analysis of MC1R gene expression in human skin cell cultures. Pigment Cell Res 2006 19, N 1:76–89.
[32] Lopez M. N., Pereda C., Ramirez M., Mendoza-Naranjo A., Serrano A., Ferreira A., Poblete R., Kalergis A. M., Kiessling R., Salazar-Onfray F. Melanocortin 1 receptor is expressed by uveal malignant melanoma and can be considered a new target for diagnosis and immunotherapy. Invest. Ophthalmol. Vis. Sci 2007 48, N 3:1219–1227.
[33] Star R. A., Rajora N., Huang J., Stock R. C., Catania A., Lipton J. M. Evidence of autocrine modulation of macrophage nitric oxide synthase by alpha-melanocyte-stimulating hormone. Proc. Natl Acad. Sci. USA 1995 92, N 17:8016–8020.
[34] Li G., Schaider H., Satyamoorthy K., Hanakawa Y., Hashimoto K., Herlyn M. Downregulation of E-cadherin and Desmoglein 1 by autocrine hepatocyte growth factor during melanoma development. Oncogene 2001 20, N 56:8125–8135.
[35] Christensen J. G., Burrows J., Salgia R. c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 2005 225, N 1:1–26.
[36] Marquette A., Bagot M., Bensussan A., Dumaz N. Recent discoveries in the genetics of melanoma and their therapeutic implications. Arch. Immunol. Ther. Exp. (Warsz) 2007 55, N 6:363–372.
[37] Burgess T., Coxon A., Meyer S., Sun J., Rex K., Tsuruda T., Chen Q., Ho S. Y., Li L., Kaufman S., McDorman K., Cattley R. C., Sun J., Elliott G., Zhang K., Feng X., Jia X. C., Green L., Radinsky R., Kendall R. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res 2006 66, N 3:1721–1729.
[38] Naka D., Shimomura T., Yoshiyama Y., Sato M., Sato M., Ishii T., Hara H. Internalization and degradation of hepatocyte growth factor in hepatocytes with down-regulation of the receptor/c-Met. FEBS Lett 1993 329, N 1–2:147–152.
[39] Johnson J. P. Cell adhesion molecules in the development and progression of malignant melanoma. Cancer Metastasis Rev 1999 18, N 3:345–357.
[40] Mesnil M., Crespin S., Avanzo J. L., Zaidan-Dagli M. L. Defective gap junctional intercellular communication in the carcinogenic process. Biochim. Biophys. Acta 2005 1719, N 1–2:125–145.
[41] van Kempen L. C., van den Oord J. J., van Muijen G. N., Weidle U. H., Bloemers H. P., Swart G. W. Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am. J. Pathol 2000 156, N 3:769–774.
[42] Thies A., Berlin A., Brunner G., Schulze H. J., Moll I., Pfuller U., Wagener C., Schachner M., Altevogt P., Schumacher U. Glycoconjugate profiling of primary melanoma and its sentinel node and distant metastases: implications for diagnosis and pathophysiology of metastases. Cancer Lett 2007 248, N 1:68–80.
[43] Piazza T., Cha E., Bongarzone I., Canevari S., Bolognesi A., Polito L., Bargellesi A., Sassi F., Ferrini S., Fabbi M. Internalization and recycling of ALCAM/CD166 detected by a fully human single-chain recombinant antibody. J. Cell Sci 2005 118, Pt 7:1515–1525.
[44] Pearl R. A., Pacifico M. D., Richman P. I., Wilson G. D., Grover R. Stratification of patients by melanoma cell adhesion molecule (MCAM) expression on the basis of risk: implications for sentinel lymph node biopsy. J. Plast. Reconstr. Aesthet. Surg 2008 61, N 3:265–271.
[45] Campoli M. R., Chang C. C., Kageshita T., Wang X., McCarthy J. B., Ferrone S. Human high molecular weight-melanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit. Rev. Immunol 2004 24, N 4:267–296.
[46] Goto Y., Arigami T., Murali R., Scolyer R. A., Tanemura A., Takata M., Turner R. R., Nguyen L., Nguyen T., Morton D. L., Ferone S., Hoon D. S. High molecular weight-melanoma-associated antigen as a biomarker of desmoplastic melanoma. Pigment Cell Melanoma Res 2010 23, N 1:137–140.
[47] Chan M. C., Murphy R. M. Kinetics of cellular trafficking and cytotoxicity of 9.2.27-gelonin immunotoxins targeted against the high-molecular-weight melanoma-associated antigen. Cancer Immunol. Immunother 1999 47, N 6:321–329.
[48] Fang D., Nguyen T. K., Leishear K., Finko R., Kulp A. N., Hotz S., Van Belle P. A., Xu X., Elder D. E., Herlyn M. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 2005 65, N 20:9328–9337.
[49] Schatton T., Murphy G. F., Frank N. Y., Yamaura K., WaagaGasser A. M., Gasser M., Zhan Q., Jordan S., Duncan L. M., Weishaupt C., Fuhlbrigge R. C., Kupper T. S., Sayegh M. H., Frank M. H. Identification of cells initiating human melanomas. Nature 2008 451, N 7176:345–349.
[50] Boiko A. D., Razorenova O. V., van de Rijn M., Swetter S. M., Johnson D. L., Ly D. P., Butler P. D., Yang G. P., Joshua B., Kaplan M. J., Longaker M. T., Weissman I. L. Human melanomainitiating cells express neural crest nerve growth factor receptor CD271. Nature 2010 466, N 7302:133–137.
[51] Hoek K. S., Goding C. R. Cancer stem cells versus phenotypeswitching in melanoma. Pigment Cell Melanoma Res 2010 23, N 6:746–759
[52] Frank N. Y., Margaryan A., Huang Y., Schatton T., WaagaGasser A. M., Gasser M., Sayegh M. H., Sadee W., Frank M. H. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 2005 65, N 10:4320–4333.
[53] Monzani E., Facchetti F., Galmozzi E., Corsini E., Benetti A., Cavazzin C., Gritti A., Piccinini A., Porro D., Santinami M., Invernici G., Parati E., Alessandri G., La Porta C. A. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur. J. Cancer 2007 43, N 5:935–946.
[54] Schatton T., Schutte U., Frank N. Y., Zhan Q., Hoerning A., Robles S. C., Zhou J., Hodi F. S., Spagnoli G. C., Murphy G. F., Frank M. H. Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res 2010 70, N 2:697–708.
[55] Held M. A., Curley D. P., Dankort D., McMahon M., Muthusamy V., Bosenberg M. W. Characterization of melanoma cells capable of propagating tumors from a single cell. Cancer Res 2010 70, N 1:388–397.
[56] Selbo P. K., Rosenblum M. G., Cheung L. H., Zhang W., Berg K. Multi-modality therapeutics with potent anti-tumor effects: photochemical internalization enhances delivery of the fusion toxin scFvMEL/rGel. PLoS One 2009 4, N 8:e6691.
[57] Au G. G., Lincz L. F., Enno A., Shafren D. R. Oncolytic Coxsackievirus A21 as a novel therapy for multiple myeloma. Br. J. Haematol 2007 137, N 2:133–141.
[58] Shibata K., Muraosa Y., Tomita Y., Tagami H., Shibahara S. Identification of a cis-acting element that enhances the pigment cell-specific expression of the human tyrosinase gene. J. Biol. Chem 1992 267, N 29:20584–20588.
[59] Golob M., Buettner R., Bosserhoff A. K. Characterization of a transcription factor binding site, specifically activating MIA transcription in melanoma. J. Invest. Dermatol 2000 115, N 1:42–47.
[60] Bosserhoff A. K., Lederer M., Kaufmann M., Hein R., Stolz W., Apfel R., Bogdahn U., Buettner R. MIA, a novel serum marker for progression of malignant melanoma. Anticancer Res 1999 19, N 4A:2691–2693.
[61] Peter I., Graf C., Dummer R., Schaffner W., Greber U. F., Hemmi S. A novel attenuated replication-competent adenovirus for melanoma therapy. Gene Ther 2003 10, N 7:530–539.
[62] Lillehammer T., Tveito S., Engesaeter B. O., Fodstad O., Maelandsmo G. M., Engebraaten O. Melanoma-specific expression in first-generation adenoviral vectors in vitro and in vivo – use of the human tyrosinase promoter with human enhancers. Cancer Gene Ther 2005 12, N 11:864–872.
[63] Rothfels H., Paschen A., Schadendorf D. Evaluation of combined gene regulatory elements for transcriptional targeting of suicide gene expression to malignant melanoma. Exp. Dermatol 2003 12, N 6:799–810.
[64] Schoensiegel F., Paschen A., Sieger S., Eskerski H., Mier W., Rothfels H., Kleinschmidt J., Schadendorf D., Haberkorn U. MIA (melanoma inhibitory activity) promoter mediated tissuespecific suicide gene therapy of malignant melanoma. Cancer Gene Ther 2004 11, N 6:408–418.
[65] Rouzaud F., Hearing V. J. Regulatory elements of the melanocortin 1 receptor. Peptides 2005 26, N 10:1858–1870.
[66] Miccadei S., Pascucci B., Picardo M., Natali P. G., Civitareale D. Identification of the minimal melanocyte-specific promoter in the melanocortin receptor 1 gene. J. Exp. Clin. Cancer Res 2008 27:71–79.
[67] Denkert C., Kobel M., Berger S., Siegert A., Leclere A., Trefzer U., Hauptmann S. Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 2001 61, N 1:303– 308.
[68] Robledo M. M., Bartolome R. A., Longo N., Rodriguez-Frade J. M., Mellado M., Longo I., van Muijen G. N., Sanchez-Mateos P., Teixido J. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J. Biol. Chem 2001 276, N 48:45098–45105.
[69] Slater M., Scolyer R. A., Gidley-Baird A., Thompson J. F., Barden J. A. Increased expression of apoptotic markers in melanoma. Melanoma Res 2003 13, N 2:137–145.
[70] Lu B., Makhija S. K., Nettelbeck D. M., Rivera A. A., Wang M., Komarova S., Zhou F., Yamamoto M., Haisma H. J., Alvarez R. D., Curiel D. T., Zhu Z. B. Evaluation of tumor-specific promoter activities in melanoma. Gene Ther 2005 12, N 4:330–338.
[71] Huang R., Zhao Z., Ma X., Li S., Gong R., Kuang A. Targeting of tumor radioiodine therapy by expression of the sodium iodide symporter under control of the survivin promoter. Cancer Gene Ther 2011 18, N 2:144–152.
[72] Gu J., Fang B. Telomerase promoter-driven cancer gene therapy. Cancer Biol. Ther 2003 2, N 4, Suppl. 1:S64–70.
[73] Konopka K., Spain C., Yen A., Overlid N., Gebremedhin S., Duzgunes N. Correlation between the levels of survivin and survivin promoter-driven gene expression in cancer and non-cancer cells. Cell. Mol. Biol. Lett 2009 14, N 1:70–89.
[74] Martinelli R., De Simone V. Short and highly efficient synthetic promoters for melanoma-specific gene expression. FEBS Lett 2005 579, N 1:153–156.
[75] Davis J. J., Wang L., Dong F., Zhang L., Guo W., Teraishi F., Xu K., Ji L., Fang B. Oncolysis and suppression of tumor growth by a GFP-expressing oncolytic adenovirus controlled by an hTERT and CMV hybrid promoter. Cancer Gene Ther 2006 13, N 7:720–723.
[76] Poulsen T. T., Pedersen N., Juel H., Poulsen H. S. A chimeric fusion of the hASH1 and EZH2 promoters mediates high and specific reporter and suicide gene expression and cytotoxicity in small cell lung cancer cells. Cancer Gene Ther 2008 15, N 9:563–575.
[77] Farokhimanesh S., Rahbarizadeh F., Rasaee M. J., Kamali A., Mashkani B. Hybrid promoters directed tBid gene expression to breast cancer cells by transcriptional targeting. Biotechnol. Prog 2010 26, N 2:505–511.
[78] Amit D., Hochberg A. Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. J. Transl. Med 2010 8:134–151.
[79] Denny W. A. Prodrugs for gene-directed enzyme-prodrug therapy (suicide gene therapy). J. Biomed. Biotechnol 2003 2003, N 1:48–70.
[80] Sverdlov E. D. Not gene therapy, but genetic surgery – the right strategy to attack cancer. Mol. Gen. Microbiol. Virol 2009 24, N 3:93–113.
[81] Ezzeddine Z. D., Martuza R. L., Platika D., Short M. P., Malick A., Choi B., Breakefield X. O. Selective killing of glioma cells in culture and in vivo by retrovirus transfer of the herpes simplex virus thymidine kinase gene. New Biol 1991 3, N 6:608– 614.
[82] Stritzker J., Pilgrim S., Szalay A. A., Goebel W. Prodrug converting enzyme gene delivery by L. monocytogenes. BMC Cancer 2008 8, N 1 P 94–103.
[83] Xu L., Huang C. C., Huang W., Tang W. H., Rait A., Yin Y. Z., Cruz I., Xiang L. M., Pirollo K. F., Chang E. H. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol. Cancer Ther 2002 1, N 5:337–346.
[84] Liu Y., Tao J., Li Y., Yang J., Yu Y., Wang M., Xu X., Huang C., Huang W., Dong J., Li L., Liu J., Shen G., Tu Y. Targeting hypoxia-inducible factor-1alpha with Tf-PEI-shRNA complex via transferrin receptor-mediated endocytosis inhibits melanoma growth. Mol. Ther 2009 17, N 2:269–277.