Biopolym. Cell. 2012; 28(5):389-396.
Bioorganic Chemistry
Synthesis and evaluation of antitumor activity ofsome thiazolo[4,5-b]pyridines
1Chaban T. I., 2Panchuk R. R., 1Klenina O. V., 2Skorokhyd N. R., 1Ogurtsov V. V., 1Chaban I. G.
  1. Danylo Halytsky Lviv National Medical University
    69, Pekarska Str., Lviv, Ukraine, 79010
  2. Institute of Cell Biology, NAS of Ukraine
    14/16, Drahomanov Str., Lviv, Ukraine, 79005


Aim. To synthesize a series of novel 3H-thiazolo[4,5-b]pyridine-2-ones by structural modification of the core heterocycle in its N3- and N6-positions and to evaluate their anticancer activity in vitro on several tumor cell lines. Methods. Organic synthesis, 1H-NMR spectroscopy, trypan blue cell viability assay. Results. A new convenient synthetic approach was developed and optimized conditions were studied for the reaction of preparation of 3H- thiazolo[4,5-b]pyridin-2-one derivatives. 5,7-Dimethyl-3H-thiazolo[4,5-b]pyridin-2-one and 6-phenylazo-5,7- dimethyl-3H-thiazolo[4,5-b]pyridin-2-one were obtained by [3 + 3]cyclocondensation of 4-iminothiazolidone- 2 with acetylacetone and phenylazoacetylacetone in methanol medium in the presence of sodium methylate. They were used as starting compounds for further structural modification of the core thiazolo[4,5-b]pyridine heterocycle in its 3- and 6-positions. On the basis of in vitro cytotoxicity studies of synthesized compounds several structure-functional relationships underlying anticancer potential of 5,7-dimethyl-3H-thiazolo[4,5-b]pyridin- 2-one derivatives were identified. Conclusions. 3H-thiazolo[4,5-b]pyridin-2-one can be considered as a promising molecular scaffold for rational design of potential anticancer drug candidates. Introduction of phenylazo substitute at C6-position of 3H-thiazolo[4,5-b]pyridin-2-one proved to be the most efficient, as it led to 3-fold increase of its anticancer potential.
Keywords: thiazolo[4,5-b]pyridines, [3+3]cyclocondensation, structural modification, antitumor activity


[1] Lesyk R. B., Zimenkovsky B. S. 4-Thiazolidones: centenarian history, current status and perspectives for modern organic and medicinal chemistry Curr. Org. Chem 2004 8, N 16:1547–1577.
[2] Saed H. H., Morsy E. M. H., Kotb E. R. Facile novel synthesis and reactions of thiazolidin-4-one derivatives for antimicrobial agents Synth. Commun 2010 40:2712–2722.
[3] Lee Y. R., Dong J. K., Kyung H. Y., Inhee M.-J. Synthesis of thia (oxa)zolopyridines and their inhibitory activities for -amyloid fibrillization Bull. Korean Chem. Soc 2008 29, N 12:2331–2336.
[4] Rao A. U., Palani A., Chen X., Huang Y., Aslanian R. G., West R. E. Jr., Williams S. M., Wu R. L., Hwa J., Sondey C., Lachowicz J. Synthesis and structure-activity relationships of 2-(1,4'-bipiperidin-1'-yl)thiazolopyridine as H3 receptor antagonists Bioorg. Med. Chem. Lett 2009 19, N 21:6176–6180.
[5] Bebernitz G. R., Beaulieu V., Dale B. A., Deacon R., Duttaroy A., Gao J., Grondine M. S., Gupta R. C., Kakmak M., Kavana M., Kirman L. C., Liang J., Maniara W. M., Munshi S., Nadkarni S. S., Schuster H. F., Stams T., St. Denny I., Taslimi P. M., Vash B., Caplan S. L. Investigation of functionally liver selective glucokinase activators for the treatment of type 2 diabetes J. Med. Chem 2009 52, N 19:6142–6152.
[6] Haydon D. J., Bennett J. M., Brown D., Collins I., Galbraith G., Lancett P., Macdonald R., Stokes N. R., Chauhan P. K., Sutariya J. K., Nayal N., Srivastava A., Beanland J., Hall R., Henstock V., Noula C., Rockley C., Czaplewski L. Creating an antibacterial with in vivo efficacy: synthesis and characterization of potent inhibitors of the bacterial cell division protein FtsZ with improved pharmaceutical properties J. Med. Chem 2010 53, N 10:3927–3936.
[7] al-Thebeiti M. S. Synthesis of some new thiazolo[3,2-a]pyridines and related heterocyclic systems IFarmaco 2000 55, N 2:109–118.
[8] Kulkarni S. S., Newman A. H. Discovery of heterobicyclic templates for novel metabotropic glutamate receptor subtype 5 antagonists Bioorg. Med. Chem. Lett 2007 17, N 11:2987– 2991.
[9] Lin R., Johnson S. G., Connolly P. J., Wetter S. K., Binnun E., Hughes T. V., Murray W. V., Pandey N. B., Moreno-Mazza S. J., Adams M., Fuentes-Pesquera A. R., Middleton S. A. Synthesis and evaluation of 2,7-diamino-thiazolo[4,5-d] pyrimidine analogues as anti-tumor epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors Bioorg. Med. Chem. Lett 2009 19, N 8:2333–2337.
[10] Komoriya S., Kobayash S., Osanai K., Yoshino T., Nagata T., Haginoya N., Nakamoto Y., Mochizuki A., Nagahara T., Suzuki M., Shimada T., Watanabe K., Isobe Y., Furugoori T. Design, synthesis, and biological activity of novel factor Xa inhibitors: improving metabolic stability by S1 and S4 ligand modification Bioorg. Med. Chem 2006 14, N 5:1309–1330.
[11] Singh B., Bacon E., Lesher G., Robinson S., Pennock P. O., Bode D. C., Pagani E. D., Bentley R. G., Connell M. J., Hamel L. T. Novel and potent adenosine 3',5'-cyclic phosphate phosphodiesterase III inhibitors: thiazolo[4,5-b][1,6]naphthyridin-2-ones J. Med. Chem 1995. 38, N 14:2546–2550.
[12] Matysiak J., Karpinska M. M., Niewiadomya A., Wietrzyk J., Klopotowska D. One-pot synthesis of new (1,3-thiazolo[5,4-b] pyridin-2-yl)benzenediols and their antiproliferative activities against human cancer cell lines Chem. Biodivers. 2012 9, N 1:48–57.
[13] Sakkiah S., Thangapandian S., John S., Lee K. W. Pharmacophore based virtual screening, molecular docking studies to design potent heat shock protein 90 inhibitors Eur. J. Med. Chem 2011 46, N 7:2937–2947.
[14] Biamonte M. A., Van de Water R., Arndt J. W, Scannevin R. H., Perret D., Lee W. C. Heat shock protein 90: inhibitors in clinical trials J. Med. Chem 2010 53, N 1:3–17.
[15] Li Q., Xu W. Novel anticancer targets and drug discovery in post genomic age Curr. Med. Chem. Anticancer Agents 2005 5, N 1:53–63.
[16] Grankvist K., Lernmark A., Taljedal I. B. Alloxan cytotoxicity in vitro. Microscope photometric analysis of Trypan Blue uptake by pancreatic islet cells in suspension Biochem. J 1977 162, N 1:19–24.
[17] Chaban T. I., Zimenkovskii B. S., Komaritsa I. D., Chaban I. G. Reaction of 4-iminothiazolidin-2-one with acetylacetone Russ. J. Org. Chem 2012 48, N. 2:268–272.
[18] Panchuk R. R., Chumak V. V., Fil' M. R., Havrylyuk D. Ya., Zimenkovsky B. S., Lesyk R. B., Stoika R. S. Study of molecular mechanisms of proapoptotic action of novel heterocyclic 4-thiazolidone derivatives Biopolym. Cell 2012 28, N 2:121–128.