Biopolym. Cell. 2020; 36(1):36-47.
Direct labeling of nucleosides with 3-thiazolylcoumarin fluorescent dyes
1Kuziv Ia. B., 1Dubey I. Ya.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143


Aim. Preparation and study of nucleosides labeled with coumarin-based fluorophores without preliminary functionalization. Methods. Organic synthesis, absorption and fluorescence spectroscopy. Results. Direct labeling of 2’-deoxynucleosides with carboxy-modified 3-thiazolylcoumarins was performed. Coumarin conjugates were obtained by the reacting of active oxybenzotriazole esters of the dyes with nucleoside 5’-hydroxyl in the presence of a base, and with cytosine amino group. Their optical properties in methanol and phosphate buffer were studied. Conclusion. N- and O-acylation of pyrimidine nucleosides with coumarin derivatives allowed to obtain conjugates with bright blue emission.
Keywords: coumarins, nucleosides, fluorescent labeling, active esters


[1] Gonçalves MST. Fluorescent labeling of biomolecules with organic probes. Chem. Rev. 2009; 109(1): 190-212.
[2] Li C, Tebo AG, Gautier A. Fluorogenic labeling strategies for biological imaging. Int J Mol Sci. 2017; 18: 1473.
[3] Wojczewski C, Stolze K, Engels JW. Fluorescent oligonucleotides - versatile tools as probes and primers for DNA and RNA analysis. Synlett 1999; 1999(10): 1667-78.
[4] Sinkeldam RW, Greco NJ, Tor Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev. 2010; 110(5): 2579-2619.
[5] El-Sagheer AH, Brown T. Nucleic acid labeling, ligation, and modification. In: Chemoselective and Bioorthogonal Ligation Reactions. V. 2. Eds. by Algar WR, Dawson PE, Medintz IL. Wiley, Weinheim, 2017;335-62.
[6] Emmrich T, El-Tayeb A, Taha H, Seifert R, Müller CE, Link A. Synthesis of a hydrolytically stable, fluorescent-labeled ATP analog as a tool for probing adenylyl cyclases. Bioorg Med Chem. Lett 2010; 20(1): 232-5.
[7] Shinohara Y, Matsumoto K, Kugenuma K, Morii T, Saito Y, Saito I. Design of environmentally sensitive fluores-cent 2′-deoxyguanosine containing arylethynyl moieties: distinction of thymine base by base-discriminating fluo-rescent (BDF) probe. Bioorg Med Chem Lett. 2010; 20(9): 2817-20.
[8] Wilhelmsson LM. Fluorescent nucleic acid base analogues. Q Rev Biophys. 2010; 43(2): 159-83.
[9] Matsumoto K, Takahashi N, Suzuki A, Morii T, Saito Y, Saito I. Design and synthesis of highly solvatochromic fluorescent 2′-deoxyguanosine and 2′-deoxyadenosine analogs. Bioorg Med Chem Lett. 2011; 21(4): 1275-8.
[10] Suzuki A, Takahashi N, Okada Y, Saito I, Nemoto N, Saito Y. Naphthalene-based environmentally sensitive fluo-rescent 8-substituted 2′-deoxyadenosines: application to DNA detection. Bioorg Med Chem Lett. 2013; 23(3): 886-92.
[11] Goodwin KJ, Gangl E, Sarkar U, Pop-Damkov P, Jones N, Borodovsky A, Woessner R, Fretland AJ. Development of a quantification method for adenosine in tumors by LC-MS/MS with dansyl chloride derivatization. Anal Biochem. 2019; 568: 78-88.
[12] De Schutter C, Roy V, Favetta P, Pavageau C, Maisonneuve S, Bogliotti N, Xie J, Agrofoglio LA. Synthesis and characterization of various 5′-dye-labeled ribonucleosides. Org Biomol Chem. 2018; 16(35): 6552-63.
[13] Prykota TI, Pfleiderer W. Nucleotides part LXXX: Synthesis of 3'-O fluorescence labeled thymidine derivatives and their 5'-o-triphosphates. Nucleosides Nucleotides Nucleic Acids 2011; 30(7-8): 544-51.
[14] Katritzky AR, Ozcan S, Todadze E. Labeling of nucleosides with fluorescent 6-chloro-2,3-napthalimide. Bioorg Med Chem Lett. 2010; 20(17): 5326-8.
[15] Shaughnessy KH. Palladium-catalyzed modification of unprotected nucleosides, nucleotides, and oligonucleo-tides. Molecules 2015; 20: 9419-54
[16] Hata T, Kurihara T. The N4-benzoylation of deoxycytidilic and cytidylic acids by means of 2-chloromethyl-4-nitrophenyl benzoate. Chem Lett. 1973; 2(8): 859-62.
[17] Igolen J, Morin C. Rapid syntheses of protected 2'-deoxycytidine derivatives. J Org Chem. 1980; 45(23): 4802-4.
[18] Steinfeld AS, Naider F, Becker JM. A simple method for selective acylation of cytidines and cytosines under mild reaction conditions. J Chem Res (M). 1979: 1437-50.
[19] Yarmoluk SM, Kostenko AM, Kryvorotenko DV, Dubey IYa. Nucleoside N-acylation with active derivatives of amino acids. Biopolym Cell 1996; 12(5): 50-5.
[20] Otera J, Nishikido J. Esterification: Methods, Reactions, and Applications. 2nd Ed. Wiley, Weinheim, 2010. - 386 p.
[21] But TYS, Toy PH. The Mitsunobu reaction: origin, mechanism, improvements, and applications. Chem Asian J. 2007; 2(11): 1340-55.
[22] Holmberg K, Hansen B. Ester synthesis with dicyclohexylcarbodiimide improved by acid catalysts. Acta Chem Scand B 1979; 33: 410-2.
[23] Kim MH, Patel D V. "BOP" as a reagent for mild and efficient preparation of esters. Tetrahedron Lett. 1994; 35(31): 5603-6.
[24] Pon RT, Yu S, Sanghvi YS. Rapid esterification of nueleosides to solid-phase supports for oligonucleotide synthesis using uronium and phosphonium coupling reagents. Bioconjug Chem. 1999; 10(6): 1051-7.
[25] Klausner YS, Chorev M. Synthesis of depsipeptides by catalysis of active esters with 1-hydroxybenzotriazole. Chem Commun. 1975; (24): 973-4.
[26] Coste J, Campagne J-M. A propos de l'estérification des acides carboxyliques par le BOP ou le PyBOP. Tetrahe-dron Lett. 1995; 36(24): 4253-6.
[27] Subirós-Funosas R, Prohens R, Barbas R, El-Faham A, Albericio F. Oxyma: An efficient additive for peptide synthesis to replace the benzotriazole-based HOBt and HOAt with a lower risk of explosion. Chem Eur J. 2009; 15(37): 9394-403.
[28] Stawikowski M, Cudic P. Depsipeptide synthesis. Methods Mol Biol. 2007; 386: 321-39.
[29] Twibanire J d AK, Grindley TB. Polyester dendrimers: smart carriers for drug delivery. Polymers (Basel). 2014; 6(1): 179-213.
[30] Wang Y, Aleiwi BA, Wang Q, Kurosu M. Selective esterifications of primary alcohols in a water-containing sol-vent. Org Lett. 2012; 14(18): 4910-3.
[31] Bergmann F, Bannwarth W, Tam S. Solid phase synthesis of directly linked PNA-DNA-hybrids. Tetrahedron Lett. 1995; 36(38): 6823-6.
[32] Twibanire JDAK, Omran RP, Grindley TB. Facile synthesis of a library of lyme disease glycolipid antigens. Org Lett. 2012; 14(15): 3909-11.
[33] Chapleur Y, Castro B, Toubiana R. "Le BOP" reagent and imidazole for selective O-acylation of trehalose. J Chem Soc Perkin Trans 1. 1980: 1940-3.
[34] Dubey LV, Dubey IYa. Onium salts as coupling reagents in the preparation of silica polymer supports for oligo-nucleotide synthesis. Ukr Bioorg Acta. 2004; 1(1-2): 23-8.
[35] Kuziv IaB, Ishchenko VV, Khilya VP, Dubey IYa. Synthesis of reagents based on 7-substituted 3-thiazolylcoumarins for covalent labeling of oligonucleo-tides. Ukr Bioorg Acta. 2008; 6(1): 3-12.
[36] Kuziv IaB, Ishchenko VV, Khilya VP, Dubey IYa. Synthesis of carboxyalkyl derivatives of 3-furylcoumarins for the fluorescent labeling of biomolecules. Ukr Bioorg Acta. 2009; 7(2): 47-54.
[37] Gait MJ (Ed.). Oligonucleotide synthesis: a practical approach. IRL Press, Oxford, 1984. 218 p.
[38] Reynolds GA, Drexhage KH. New coumarin dyes with rigidized structure for flash amp-pumped dye lasers. Opt. Commun. 1975; 13(3): 222-5.
[39] Salgado LEV, Vargas-Hernández C. Spectrophotometric determination of the pKa, isosbestic point and equation of absorbance vs pH for a universal pH indicator. Am J Anal Chem. 2014; 05(17): 1290-301.
[40] Gryaznov SM, Letsinger RL. Synthesis of oligonucleotides via monomers with unprotected bases. J Am Chem Soc. 1991; 113(15): 5876-7.
[41] Fink DW, Koehler WR. pH effects on fluorescence of umbelliferone. Anal Chem. 1970; 42(9): 990-3.