Biopolym. Cell. 2020; 36(4):254-263.
Structure and Function of Biopolymers
Methylation of human elongation factor eEF1A2 is not essential for eEF1A2-eEF1B interaction
1Porubleva L. V., 2Kolesnyk D. L., 1El’skaya A. V., 1Negrutskii B. S.
  1. Institute of Molecular Biology and Genetics, NAS of Ukraine
    150, Akademika Zabolotnoho Str., Kyiv, Ukraine, 03143
  2. R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NAS of Ukraine
    45, Vasilkivska Str., Kyiv, Ukraine, 03022


Aim. Study on a possible role of methylation of lysine residues of eEF1A2 in its interactions with the elongation translation complex eEF1B. Methods. Mutagenesis, cloning, 293 human cell culture, BRET (bioluminescence resonance energy transfer), cell transfection, HaloTag pull down of protein complexes, Western blot, densitometry. Results. Five mutants of eEF1A2 with a single substitution of methylable lysine residue for arginine and the mutant with all five lysine residues mutated were generated. BRET analysis and HaloTag pull down experiments of isolated protein complexes have shown no differences in interactions of eEF1B subunits with eEF1A2 and its unmethylable mutants. Conclusion. Methylation of eEF1A2 apparently does not influence the interactions of eEF1A2 with eEF1B subunits.
Keywords: еЕF1А2, еЕА1Вα, еЕА1Вβ, еЕА1Вγ, methylation, BRET, HaloTag


[1] Negrutskii B, Vlasenko D, Mirande M, Futernyk P, El'skaya A. mRNA-Independent way to regulate translation elongation rate in eukaryotic cells. IUBMB Life. 2018;70(3):192-96.
[2] Le Sourd F, Boulben S, Le Bouffant R, Cormier P, Morales J, Belle R, Mulner-Lorillon O. eEF1B: At the dawn of the 21st century. Biochim Biophys Acta. 2006;1759(1-2):13-31.
[3] Trosiuk TV, Shalak VF, Szczepanowski RH, Negrutskii BS, El'skaya AV. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα. FEBS J. 2016;283(3):484-97.
[4] Newbery HJ, Loh DH, O'Donoghue JE, Tomlinson VA, Chau YY, Boyd JA, Bergmann JH, Brownstein D, Abbott CM. Translation elongation factor eEF1A2 is essential for post-weaning survival in mice. J Biol Chem. 2007;282(39):28951-59.
[5] Novosylna AV, Timchenko AA, Tiktopulo EI, Serdyuk I, Negrutskii BS, El'skaya AV. Characterization of physical properties of two isoforms of translation elongation factor 1A. Biopolym Cell. 2007; 23(5):386-90.
[6] Timchenko AA, Novosylna OV, Prituzhalov EA, Kihara H, El'skaya AV, Negrutskii BS, Serdyuk IN. Different oligomeric properties and stability of highly homologous A1 and proto-oncogenic A2 variants of mammalian translation elongation factor eEF1. Biochemistry. 2013;52(32):5345-53.
[7] Novosylna O, Jurewicz E, Pydiura N, Goral A, Filipek A, Negrutskii B, El'skaya A. Translation elongation factor eEF1A1 is a novel partner of a multifunctional protein Sgt1. Biochimie. 2015;119:137-45.
[8] Novosylna O, Doyle A, Vlasenko D, Murphy M, Negrutskii B, El'skaya A. Comparison of the ability of mammalian eEF1A1 and its oncogenic variant eEF1A2 to interact with actin and calmodulin. Biol Chem. 2017;398(1):113-24.
[9] Li Z, Wang Y, Qiu J, Li Q, Yuan C, Zhang W, Wang D, Ye J, Jiang H, Yang J, Cheng J. The polycomb group protein EZH2 is a novel therapeutic target in tongue cancer. Oncotarget. 2013;4(12): 2532-49.
[10] Kahns S, Lund A, Kristensen P, Knudsen CR, Clark BF, Cavallius J, Merrick WC. The elongation factor 1 A-2 isoform from rabbit: cloning of the cDNA and characterization of the protein. Nucleic Acids Res. 1998;26:1884-90.
[11] Soares DC, Barlow PN, Newbery HJ, Porteous DJ, Abbott CM. Structural models of human eEF1A1 and eEF1A2 reveal two distinct surface clusters of sequence variation and potential differences in phosphorylation. PLoS One. 2009;4(7):e6315.
[12] Negrutskii B, Vlasenko D, El'skaya A. From global phosphoproteomics to individual proteins: the case of translation elongation factor eEF1A. Expert Rev Proteomics. 2012;9(1):71-83.
[13] Anand N, Murthy S, Amann G, Wernick M, Porter LA, Cukier IH, Collins C, Gray JW, Diebold J, Demetrick DJ, Lee JM. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet. 2002; 31(3):301-5.
[14] Kobayashi D, Tokuda T, Sato K, Okanishi H, Nagayama M, Hirayama-Kurogi M, Ohtsuki S, Araki N. Identification of a specific translational machinery viaTCTP-EF1A2 interaction regulating NF1-associated tumor growth by affinity purification and data-independent mass spectrometry acquisition (AP-DIA). Mol Cell Proteomics. 2019;18(2):245-62.
[15] Veremieva M, Khoruzhenko A, Zaicev S, Negrut-skii B, El'skaya A. Unbalanced expression of the translation complex eEF1 subunits in human cardioesophageal carcinoma. Eur J Clin Invest. 2011;41(3):269-76.
[16] Veremieva M, Kapustian L, Khoruzhenko A, Zakharychev V, Negrutskii B, El'skaya A. Independent overexpression of the subunits of translation elongation factor complex eEF1H in human lung cancer. BMC Cancer. 2014;14:913.
[17] Li D, Rawle DJ, Wu Z, Jin H, Lin MH, Lor M, Abbott CM, Harrich D. eEF1A demonstrates paralog specific effects on HIV-1 reverse transcription efficiency. Virology. 2019;530:65-74.
[18] Chen S, Yang Z, Wilkinson AW, Deshpande AJ, Sidoli S, Krajewski K, Strahl BD, Garcia BA, Armstrong SA, Patel DJ, Gozani O. The PZP domain of AF10 senses unmodified H3K27 to regulate DOT1L-mediated methylation of H3K79. Mol Cell. 2015;60(2):319-27.
[19] Biggar KK, Li SS. Non-histone protein methylation as a regulator of cellular signalling and function. Nat Rev Mol Cell Biol. 2015;16(1):5-17
[20] Egorova KS, Olenkina OM, Olenina LV. Lysine methylation of nonhistone proteins is a way to regulate their stability and function. Biochemistry (Mosc). 2010;75(5):535-48.
[21] Morgunkova A, Barlev NA. Lysine methylation goes global. Cell Cycle. 2006;5(12), 1308-12.
[22] Polevoda B, Sherman F. Methylation of proteins involved in translation. Molecular Microbiology. 2007; 65(3): 590-606.
[23] Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004; 119(7):941-53.
[24] Black JC, Manning AL, Van Rechem C, Kim J, Ladd B, Cho J, Pineda CM, Murphy N, Daniels DL, Montagna C, Lewis PW, Glass K, Allis CD, Dy-son NJ, Getz G, Whetstine JR. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Cell. 2013;154(3):541-55.
[25] Faria JA, Corrêa NC, de Andrade C, de Angelis Campos AC, Dos Santos Samuel de Almeida R, Rodrigues TS, de Goes AM, Gomes DA, Silva FP. SET domain-containing protein 4 (SETD4) is a newly identified cytosolic and nuclear lysine methyltransferase involved in breast cancer cell proliferation. J Cancer Sci Ther. 2013;5(2):58-65.
[26] Kudithipudi S, Jeltsch A. Role of somatic cancer mutations in human protein lysine methyltransferases. Biochim Biophys Acta. 2014;1846(2):366-79.
[27] Wang L, Yamaguchi S, Burstein MD, Terashima K, Chang K, Ng HK, Nakamura H, He Z, Doddapaneni H, Lewis L, Wang M, Suzuki T, Nishikawa R, Natsume A, Terasaka S, Dauser R, Whitehead W, Adekunle A, Sun J, Qiao Y, Marth G, Muzny DM, Gibbs RA, Leal SM, Wheeler DA, Lau CC. Novel somatic and germline mutations in intra-cranial germ cell tumours. Nature. 2014;511(7508):241-45.
[28] Dever TE, Costello CE, Owens CL, Rosenberry TL, Merrick WC. Location of seven post-translational modifications in rabbit elongation factor 1 alpha including dimethyllysine, trimethyllysine, and glycerylphosphorylethanolamine. J Biol Chem. 1989;264(34):20518-25.
[29] Liu S, Hausmann S, Carlson SM, Fuentes ME, Francis JW, Pillai R, Lofgren SM, Hulea L, Tandoc K, Lu J, Li A, Nguyen ND, Caporicci M, Kim MP, Maitra A, Wang H, Wistuba II, Porco JA Jr, Bassik MC, Elias JE, Song J, Topisirovic I, Van Rechem C, Mazur PK, Gozani O. METTL13 methylation of eEF1A increases translational output to promote tumorigenesis. Cell. 2019;176(3):491-504.
[30] Crepin T, Shalak VF, Yaremchuk AD, Vlasenko DO, McCarthy A, Negrutskii BS, Tukalo MA, El'skaya AV. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes. Nucleic Acids Res. 2014;42(20):12939-48.
[31] Kanibolotsky DS, Novosyl'na OV, Abbott CM, Negrutskii BS, El'skaya AV. Multiple molecular dynamics simulation of the isoforms of human translation elongation factor 1A reveals reversible fluctuations between "open" and "closed" conformations and suggests specific for eEF1A1 affinity for Ca2+-calmodulin. BMC Struct Biol. 2008;8:4.
[32] Weiner MP, Costa GL, Schoettlin W, Cline J, Mathur E, Bauer JC. Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene. 1994;151(1-2):119-23.
[33] Machleidt T, Woodroofe CC, Schwinn MK, Méndez J, Robers MB, Zimmerman K, Otto P, Dani-els DL, Kirkland TA, Wood KV. NanoBRET-A Novel BRET Platform for the Analysis of Protein-Protein Interactions. ACS Chem Biol. 2015;10(8):1797-804.
[34] Negrutskii B. Non-translational connections of eEF1B in the cytoplasm and nucleus of cancer cells. Front Mol Biosci. 2020;7:56.
[35] Malecki J, Aileni VK, Ho AYY, Schwarz J, Moen A, Sørensen V, Nilges BS, Jakobsson ME, Leidel SA, Falnes PØ. The novel lysine specific methyltransferase METTL21B affects mRNA translation through inducible and dynamic methylation of Lys-165 in human eukaryotic elongation factor 1 alpha (eEF1A). Nucleic Acids Res. 2017;45(8):4370-89.
[36] Hamey JJ, Wilkins MR. Methylation of Elongation Factor 1A: Where, Who, and Why? Trends Biochem Sci. 2018;43(3):211-23.
[37] Jakobsson ME, Małecki J, Falnes PØ. Regulation of eukaryotic elongation factor 1 alpha (eEF1A) by dynamic lysine methylation. RNA Biol. 2018;15(3):314-19.
[38] Jakobsson ME, Małecki JM, Halabelian L, Nilges BS, Pinto R, Kudithipudi S, Munk S, Davydova E, Zuhairi FR, Arrowsmith CH, Jeltsch A, Lei-del SA, Olsen JV, Falnes PØ. The dual methyltransferase METTL13 targets N terminus and Lys55 of eEF1A and modulates codon-specific translation rates. Nat Commun. 2018;9(1):3411.
[39] Xiao S, Wang Y, Ma Y, Liu J, Tang C, Deng A, Fang C. Dimethylation of eEF1A at lysine 55 plays a key role in the regulation of eEF1A2 on malignant cell functions of acute myeloid leukemia. Technol Cancer Res Treat. 2020;19:1533033820914295.
[40] Cao Y, Portela M, Janikiewicz J, Doig J, Abbott CM. Characterisation of translation elongation factor eEF1B subunit expression in mammalian cells and tissues and co-localisation with eEF1A2. PLoS One. 2014;9(12):e114117.
[41] Lukash TO, Turkivska HV, Negrutskii BS, El'skaya AV. Chaperone-like activity of mammalian elongation factor eEF1A: renaturation of aminoacyl-tRNA synthetases.Int J Biochem Cell Biol. 2004;36(7):1341-1347.
[42] Grund A, Szaroszyk M, Korf-Klingebiel M, Malek Mohammadi M, Trogisch FA, Schrameck U, Gigina A, Tiedje C, Gaestel M, Kraft T, Hegermann J, Batkai S, Thum T, Perrot A, Remedios CD, Riechert E, Völkers M, Doroudgar S, Jungmann A, Bauer R, Yin X, Mayr M, Wollert KC, Pich A, Xiao H, Katus HA, Bauersachs J, Müller OJ, Heineke J. TIP30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Mol Med. 2019;11(10):e10018.
[43] Chan HY. Expanded polyalanine tracts function as nuclear export signals and promote protein mislocalization via eEF1A1 factor. J Biol Chem. 2017;292(14):5784-5800.
[44] Li S, Feng S, Wang JH, He WR, Qin HY, Dong H, Li LF, Yu SX, Li Y, Qiu HJ. eEF1A Interacts with the NS5A Protein and Inhibits the Growth of Classical Swine Fever Virus. Viruses. 2015;7(8):4563-4581.
[45] Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Cell. 2016;167(5):1229-40.
[46] Klassen R, Schaffrath R. Collaboration of tRNA modifications and elongation factor eEF1A in deco-ding and nonsense suppression. Sci Rep. 2018;8(1):12749.
[47] Petrushenko ZM, Budkevich TV, Shalak VF, Negrutskii BS, El'skaya AV. Novel complexes of mammalian translation elongation factor eEF1A.GDP with uncharged tRNA and aminoacyl-tRNA synthetase. Implications for tRNA channeling. Eur J Biochem. 2002;269(19):4811-18.
[48] Sasikumar AN, Perez WB, Kinzy TG. The many roles of the eukaryotic elongation factor 1 complex. Wiley Interdiscip Rev RNA. 2012;3(4):543-55.