Biopolym. Cell. 2021; 37(5):325-334.
Structure and Function of Biopolymers
Composition of EVs markers under normoxic and hypoxic conditions depends on the expression level of adaptor protein Ruk/CIN85 in mouse renal carcinoma Renca cells
1, 2Zhyvolozhnyi A. Yu., 2Horak I. R., 2Skaterna T. D., 2Khudiakova O. V., 1Vainio S. J., 1Samoylenko A. A., 2Drobot L. B.
  1. University of Oulu
    Linnanmaa, PO Box 3000, FIN-90014 Oulu, Finland
  2. Palladin Institute of Biochemistry, NAS of Ukraine
    9, Leontovycha Str., Kyiv, Ukraine, 01601


Aim. To isolate and characterize extracellular vesicles (EVs) produced by mouse renal car-cinoma Renca cells with different expression levels of the adaptor protein Ruk/CIN85 under normoxia and hypoxia conditions. Methods. The density gradient centrifugation was used to isolate EVs from the conditioned medium of Renca cells cultured under normoxia and hy-poxia conditions. Further characterization of EVs was performed by using nanoparticle tracking analysis (NTA), electron microscopy and Western Blot analysis. Results. Significant differences in average particle size between EVs produced by sublines studied under experimental conditions were not found. At the same time, concentration of particles pro-duced by Ruk/CIN85 overexpressing cells turned out to be an order of magnitude higher in hypoxia in comparison to normoxia conditions. It was shown that under normoxia condi-tions the content of both Ruk/CIN85 and EVs’ markers Alix and CD81 was increased in vesicles produced by Renca cells with Ruk/CIN85 overexpression in comparison with those from control mock-transfected cells. Under hypoxia conditions, the content of studied pro-teins decreased by more than two orders of magnitude in EVs secreted by Renca cells with up-regulation of adaptor protein whereas the content of Ruk/CIN85 and CD81 increased in EVs from mock-transfected cells. Conclusions. It has been demonstrated that the adaptor protein Ruk/CIN85 is a novel component of EVs produced by tumor cells that may play a role in the control of EV composition under normoxia and hypoxia.
Keywords: renal cell carcinoma, extracellular vesicles, exosomes, adaptor protein Ruk/CIN85, normoxia, hypoxia


[1] Théry C, Witwer K, Aikawa E, Alcaraz M et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7:1535750.
[2] Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, Shao Y, Zheng S. Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. 2020; 5:144.
[3] Bart G, Fischer D, Samoylenko A, Zhyvolozhnyi A, Stehantsev P, Miinalainen I, Kaakinen M, Nurmi T, Singh P, Kosamo S, Rannaste L, Viitala S, Hiltunen J, Vainio S. Characterization of nucleic acids from extracellular vesicles enriched human sweat. BMC Genomics. 2021; 22:425.
[4] Lee K, Kim J, Han S, Lee D, Lee H, Yim S, Kim D. The extracellular vesicle of gut microbial Paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. Microbiome. 2020; 8:107.
[5] Sun Y, Ruan J, Jiang Z, Wang L, Wang S. Extracellular vesicles: a new perspective in tumor therapy. Biomed Res Int. 2018; 2687954.
[6] Robbins P, Morelli A. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014; 14(3):195-208.
[7] Koog L, Gandek T, Nagelkerke A. Liposomes and extracellular vesicles as drug delivery systems: a comparison of composition, pharmacokinetics, and functionalization. Adv Healthc Mater. 2021; 2100639.
[8] Chang W, Cerione R, Antonyak M. Extracellular vesicles and their roles in cancer progression. Methods Mol Biol. 2021; 2174:143-170.
[9] Samoylenko A, Kögler M, Zhyvolozhnyi A, Makieieva O, Bart G, Andoh S, Roussey M, Vainio S, Hiltunen J. Time‑gated Raman spectroscopy and proteomics analyses of hypoxic and normoxic renal carcinoma extracellular vesicles. Sci Rep. 2021; 11:19594.
[10] Ullah S, Zhivonitko V, Samoylenko A, Zhyvolozhnyi A, Viitala S, Kankaanp S, Komulainen S, Schroder L, Vainio S, Telkki V. Identification of extracellular nanoparticle subsets by nuclear magnetic resonance. Chem Sci. 2021; 12:8311-8319
[11] Chena Z, Larreginac A, Morellia A. Impact of extracellular vesicles on innate immunity. Curr Opin Organ Transplant. 2019; 24(6): 670-678.
[12] Bedke J, Gauler T, Grünwald V, Hegele A, Herrmann E, Hinz S, Janssen J, Schmitz S, Schostak M, Tesch H, Zastrow S, Miller K. Systemic therapy in metastatic renal cell carcinoma. World J Urol. 2017; 35(2):179-188.
[13] Pawson T. Dynamic control of signaling by modular adaptor proteins. Curr Opin Cell Biol. 2007; 19(2):112-6.
[14] Schmidt MHH, Hoeller D, Yu J, Furnari FB, Cavenee WK, Dikic I, Bögler O. Alix/AIP1 antagonizes epidermal growth factor receptor downregulation by the Cbl-SETA/CIN85 complex. Mol Cell Biol. 2004;24(20):8981-93.
[15] Büchse T, Horras N, Lenfert E, Krystal G, Körbel S, Schümann M, Krause E, Mikkat S, Tiedge M. CIN85 inter-acting proteins in B cells-specific role for SHIP-1. Mol Cell Proteomics. 2011; 10(10):M110.006239.
[16] Lynch DK, Winata SC, Lyons RJ, Hughes WE, Lehrbach GM, Wasinger V, Corthals G, Cordwell S, Daly RJ. A Cortactin-CD2-associated protein (CD2AP) complex provides a novel link between epidermal growth factor receptor endocytosis and the actin cytoskeleton. J Biol Chem. 2003; 278(24):21805-13.
[17] Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016; 214(2):197-213.
[18] Tossidou I, Teng B, Drobot L, Meyer-Schwesinger C, Worthmann K, Haller H, Schiffer M. CIN85/RukL is a novel binding partner of nephrin and podocin and mediates slit diaphragm turnover in podocytes. J Biol Chem. 2010; 85(33):25285-95.
[19] Mayevska O, Shuvayeva H, Igumentseva N, Havrylov S, Basaraba O, Bobak Y, Barska M, Volod'ko N, Baranska J, Buchman V, Drobot L. Expression of adaptor protein Ruk/CIN85 isoforms in cell lines of various tissue origins and human melanoma. Exp Oncol. 2006; 28(4):275-281.
[20] Ma Y, Ye F, Xie X, Zhou C, Lu W. Significance of PTPRZ1 and CIN85 expression in cervical carcinoma. Arch Gynecol Obstet. 2011; 284(3):699-704.
[21] Wakasaki T, Masuda M, Niiro H, Jabbarzadeh-Tabrizi S, Noda K, Taniyama T, Komune S, Akashi K. A critical role of c-Cbl-interacting protein of 85 kDa in the development and progression of head and neck squamous cell carcinomas through the ras-ERK pathway. Neoplasia. 2010; 12(10):789-96.
[22] Yakymovych I, Yakymovych M, Zang G, Mu Y, Bergh A, Landström M, Heldin C-H. CIN85 modulates TGFβ signaling by promoting the presentation of TGFβ receptors on the cell surface. J Cell Biol. 2015; 210(2):319-32.
[23] Cascio S, Finn OJ. Complex of MUC1, CIN85 and Cbl in Colon Cancer Progression and Metastasis. Cancers (Basel). 2015; 7(1):342-52.
[24] Samoylenko A, Vynnytska-Myronovska B, Byts N, Kozlova N, Basaraba O, Pasichnyk G, Palyvoda K, Bobak Y, Barska M, Mayevska O, Rzhepetsky Y, Shuvayeva H, Lyzogubov V, Usenko V, Savran V, Volodko N, Buchman V, Kietzmann T, Drobot L. Increased levels of the HER1 adaptor protein Rukl/CIN85 contribute to breast cancer malignancy. Carcinogenesis. 2012; 33(10):1976-84.
[25] Valcz G, Galamb O, Krenács T, Spisák S, Kalmár A, Patai ÁV, Wichmann B, Dede K, Tulassay Z, Molnár B. Exosomes in colorectal carcinoma formation: ALIX under the magnifying glass. Mod Pathol. 2016; 29(8):928-38.
[26] Schroeder B, Srivatsan S, Shaw A, Billadeau D, McNiven MA.CIN85 phosphorylation is essential for EGFR ubiquitination and sorting into multivesicular bodies. Mol Biol Cell. 2012; 23(18):3602-11.
[27] Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012; 14(7):677-85.
[28] Schmidt MHH, Dikic I, Bögler O. Src phosphorylation of Alix/AIP1 modulates its interaction with binding partners and antagonizes its activities. J Biol Chem. 2005; 280(5):3414-25.