Biopolym. Cell. 2021; 37(5):357-368.
Molecular and Cell Biotechnologies
An influence of complexes of therapeutic antisense oligodeoxynucleotides with cationic polymers on cell respiration
1Kozak M. R., 1Ostapiv D. D., 2Mitina N. Y., 1Petruh I. M., 2Volianiuk K. A., 2Zaichenko A. S., 3Vlizlo V. V.
  1. Institute of Animal Biology, NAAS of Ukraine
    38, Stusa Str., Lviv, Ukraine, 79034
  2. Lviv Polytechnic National University
    12, S. Bandery Str., Lviv, Ukraine, 79013
  3. Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies of Lviv
    50, Pekarska Str., Lviv, Ukraine, 79010


Antisense-DNA technologies are new strategy for the treatment of prion infections. This strategy requires prolonged administrations of the drugs, which are likely to alter cell redox processes. Aim. The evaluation of cell survival and intensity of oxidative processes in vitro under the influence of antisense-oligodeoxynucleotides (asODNs) as cell prion inhibitors (PrPC) complexed with cationic polyelectrolyte. Methods. Free diffusion in agarose gel, study of cytotoxic action on model cells (bull semen), polarography and potentiometric measurement of oxygen uptake, statistical analysis. Results. Poly(dimethylaminoethyl methacrylate)[-]based surfactants form complexes with asODNs. Polyethylene glycol containing surfactants increase oxygen uptake by cells: by 18 % (VI), by 37 % (IV) and 2.6-fold for V. An addition of the IV‑asODNs complex into [the] cell medium did not affect the oxygen absorption; however, it increased reduction processes. Interpolyelectrolyte complex V-asODNs increased the cell respiration by 1.95 times. VI separately increased the cell absorption of oxygen by 18 % and in the complex with asODNs — by 36 %. VI possessed the lowest cytotoxicity. Conclusions. New cationic polyelectrolytes form complexes with asODNs. VI causes the smallest effect on the RedOx processes of model cells and possesses the lowest cytotoxic effect.
Keywords: antisense oligodeoxynucleotides, polyelectrolyte complexes, cytotoxicity, redox processes, prion


[1] Nicoll AJ, Collinge J. Preventing prion pathogenicity by targeting the cellular prion protein. Infect. Disord Drug Targets. 2009; 9(1):48-57.
[2] Susol NU. Influence of complexes of antisense-oligonucleotides with polymeric carriers on content of cellular prion in rat organs. Studia Biologica. 2017; 11(1):59-66.
[3] Stein CA, Cohen JS. Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Res. 1988; 48(10): 2659-68.
[4] Stadnyk VV, Izyumova LA, Rzhepeckyy YuA, Mayor ChYa, Verbitskyy PI, Vlizlo VV. Antisense oligonucleotides as potential drugs for prophylaxis of prion infections. Ukr Biochem J. 2009; 81(4):112-116.
[5] Kozak MR, Ivanytska LA, Zaichenko OS, Ostapiv DD, Vlizlo VV. Detection of complexes of oligodeoxynucleo-tides with polymericcarriers. Biotechnol Acta. 2013;6(5): 94-9.
[6] Ivanytska L, Stadnyk V, Kozak M, Zaichenko A, Mitina N, Vlizlo V. Nonviral nanoscale-based delivery of antisense oligonucleotides enhances inhibition of the cellular prion expression in vivo. Bridges in Life Sciences 6th Annual Scientific Meeting, 8-11 April, 2011: Biopolym Cell. 2011; 27 (2 Supl): 136.
[7] Peña FJ., O'Flaherty C, Rodríguez JMO, Cano FEM, Gaitskell-Phillips GL, Gil MC, Ferrusola CO. Redox Regula-tion and Oxidative Stress: The Particular Case of the Stallion Spermatozoa. Antioxidants. 2019; 8(11): 23.
[8] Paiuk O, Mitina N, SloufM, Pavlova E, FiniukN, KinashN, KarkhutA, MankoN, GromovoyT, HevusO, Shermolo-vichYu, StoikaR, ZaichenkoA. Fluorine-containing block/branched polyamphiphiles forming bioinspired com-plexes with biopolymers. Colloids Surf B Biointerfaces. 2019; 174:393-400.
[9] Dikyy MA. Synthesis and somerections of peroxide monomers - derivatives of isopropenyl benzene. Russ J Org Chem. 1981;17: 353.
[10] Braun D, Cherdron H, Ritter H. PolymerSynthesis: TheoryandPractice: Fundamentals, Methods, Experiments; Springer:Heidelberg, Germany. 2004.
[11] Kozak MR, Ivanytska LA, Zaichenko OS, Ostapiv DD, Vlizlo VV. Detection of complexes of oligodeoxynucleo-tides with polymeric carriers. Biotechnologia Acta. 2013; 6 (5): 94-99.
[12] Kozak MR, Vlizlo VV, Ivanytska LA. Method for detection of poliplexoligodeoxynucleotides with cationic oligoelectrolytes. A utility model N 70080, 2012.
[13] Srivastava N. Protocols in semen biology (Comparing assays). Springer Nature Singapore, 2017; 285p.
[14] Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mito-chondria: central role of complex III. J Biol Chem. 2003; 278:36027-31.
[15] Faris R, Moore RA, Ward A, Sturdevant DE, Priola SA, Beemon KL. Mitochondrial respiration is impaired during late-stage hamster prion infection. J. Virol. 2017;91(18): 1-15.
[16] Chang I. The action of iodoacetate and fluoride on the isolated rabbit's auricle. Exp Physiol. 1938; 137-47.
[17] Esposti MD. Inhibitors of NADH-ubiquinone reductase: an overview. Biochim Biophys Acta. 1998;1364(2):222-35.
[18] Choi W-S, Palmiter RD, Xia Z. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model. J Cell Biol. 2011; 192(5): 873-82.
[19] Leary SC, Hills BC, Lyons CN, Carison CG, Michaud D, Kraft CS, Ko K, Glerum DM, Moyes CD. Chronic treatment with azide in situ leads to an irreversible loss of cytochrome c oxidase activity via holoenzyme dissoci-ation. J Biol Chem. 2002;277(13):11321-8.
[20] ZuoY, HuJ, XuX, GaoX, WangY, Zhu S. Sodiumazide induces mitochondria mediated apoptosis in PC12 cells through Pgc 1α associated signaling pathway. Mol Med Rep. 2019;19(3): 2211-9.
[21] Zholobak NM. Àntibacterial effects of the volloidal (nanosized) cerium dioxide. Bulletin of problems in biology and medicine. 2015;3(123): 23-8.
[22] Chen L, Yan C, Zheng Z. Functional polymer surfaces for controlling cell behaviors. Mater Today. 2018;21(1):38-59.
[23] Pakulova OK, Klochkov VK, Kavok NS, Kostina IA, SopotovaAS, Bondarenko VA. Effect of rare-earth-based nanoparticles on the erythrocyte osmotic adaptation. Biophys Bull. 2017;37 (1):42-50.
[24] Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003; 552 (2): 335-44.
[25] Nemoto S, Takeda K, Yu Z-X, Ferrans VJ, Finkel T. Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol. 2000;20 (19): 7311-8.
[26] Zhao R, Jiang S, Zhang L, Yu Z‑B. Mitochondrial electron transport chain, ROS generation and uncoupling. Int J Mol Med. 2019; 44: 3-15.
[27] Orrenius S, Gogvadze V, Zhivotovsky B. Mitochondrial oxidative stress: Implications for cell death. Annu Rev Pharmacol Toxicol. 2007; 47:143-83.