Biopolym. Cell. 1989; 5(3):5-22.
«Unusual» loci of Drosophila genome activated by heat shock and under other stress conditions
1Gubenko I. S.
  1. Institute of Molecular Biology and Genetics, Academy of Sciences of the Ukrainian SSR
    Kiev, USSR


The 93D heat-shock (HS) locus differs fundamentally from the other well characterized protein-coding hs loci of D. melanogaster. Despite a high level of RNA production, 93D appears to code no major hs proteins (hsp's) whose genes are mapped in other large hs puffs. A major, 53D-like, puff with the unusual inducibility characteristics and specific structural and functional features is a component of the hs response in every Drosophila species studied. DNA from «unusual» HS loci of 93D D. melanogaster and 2-48B D. hydei is cloned and characterized. The unique and neighbouring repetitive DNA sequences of the loci are transcribed, but these transcripts would probably contain no coding sequences. The ultrastructural features of such loci show considerable evolutionary conservation: 93D D. melanogaster, 2-48B D. hydei and 20CD D. virilis hs puffs contain giant RNP-particles with specific antigenic determinants which are absent in other typical hs puffs. In contrast, the sequence composition of the «unusual» HS loci evolves much faster than the sequences coding the major hsp's. Unusual characteristics of the unique hs puffs permit suggesting that the function of these loci is conservative in spite of divergence at the nucleotide sequence level.


[1] Heat shock from bacteria to man . Eds M. J. Schlesinger, M. Ashburner and A. Tissieres . New York: Cold Spring Harbor Lab., 1982. 431 p.
[2] Nover L, Hellmund D, Neumann D, Scharf K-D, Serfling E. Heat shock response of eukaryotic cells. Biol Zentralbl. 1984; 103(2):357-435.
[3] Ritossa F.A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia. 1962; 18(12):571-3.
[4] Berendes HD, Holt ThKH. The induction of chromosomal activities by temperature shocks. Genenen phaenen. 1964; 9(1):1-7.
[5] Berendes HD. Factors involved in the expression of gene activity in polytene chromosomes. Chromosoma. 1968;24(4):418-37.
[6] Berendes HD, Van Breugelf, Holt TK. Experimental puffs in salivary gland chromosomes of Drosophila hydei. Chromosoma. 1965;16:35-46.
[7] Berendes HD. Synthetic activity of polytene chromosomes. Int Rev Cytol. 1973;35:61-116.
[8] Ashburner M. Patterns of puffing activity in the salivary gland chromosomes of Drosophila. V. Responses to environmental treatments. Chromosoma. 1970;31(3):356-76.
[9] Ashburner M, Bonner JJ. The induction of gene activity in drosophilia by heat shock. Cell. 1979;17(2):241-54. Review.
[10] Gubenko IS, Baricheva EM. Drosophila virilis puffs induced by temperature and other environmental factors. Genetika. 1979; 15(8):1399-414.
[11] Pascual L, De Frutos R. Stress response in Drosophila subobscura. 1. Puff activity after heat shocks. Biol Cell. 1986; 57(2):127-133.
[12] Scouras ZG, Karamaplidou GA, Kastritsis CD. The influence of heat shock on the puffing pattern of Drosophila auraria polytene chromosomes. Genetica. 1986;69(3):213-8.
[13] Lewis M, Helmsing PJ, Ashburner M. Parallel changes in puffing activity and patterns of protein synthesis in salivary glands of Drosophila. Proc Natl Acad Sci U S A. 1975;72(9):3604-8.
[14] Bonner JJ, Pardue ML. The effect of heat shock on RNA synthesis in Drosophila tissues. Cell. 1976;8(1):43-50.
[15] Spradling A, Pardue ML, Penman S. Messenger RNA in heat-shocked Drosophila cells. J Mol Biol. 1977;109(4):559-87.
[16] Livak KJ, Freund R, Schweber M, Wensink PC, Meselson M. Sequence organization and transcription at two heat shock loci in Drosophila. Proc Natl Acad Sci U S A. 1978;75(11):5613-7.
[17] Bridges CB. Salivary Chromosome maps: With a Key to the Banding of the Chromosomes of Drosophila Melanogaster. J Hered. 1935. 26(2):60-4.
[18] Pelham H. Activation of heat-shock genes in eukaryotes. Trends in Genetics. 1985;1:31–5.
[19] Mukherjee T, Lakhotia SC. 3H-uridine incorporation in the puff 93D and in chromocentric heterochromatin of heat shocked salivary glands of Drosophila melanogaster. Chromosoma. 1979;74(1):75-82.
[20] Lakhotia SC, Mukherjee T. Absence of novel translation products in relation to induced activity of the 93D puff in Drosophila melanogaster. Chromosoma. 1982;85(3):369-74.
[21] Peters FP, Lubsen NH, Sondermeijer PJ. Rapid sequence divergence in a heat shock locus of Drosophila. Chromosoma. 1980;81(2):271-80.
[22] Lakhotia SC, Singh AK. Conservation of the 93D puff of Drosophila melanogaster in different species of Drosophila. Chromosoma. 1982;86(2):265–78.
[23] Poluektova EV. A change in the puff spectrum during development of Drosophila virilis. Ontogenez. 1975;6(3):263-8.
[24] Lakhotia SC, Mukherjee T. Specific activation of puff 93D of Drosophila melanogaster by benzamide and the effect of benzamide treatment on the heat shock induced puffing activity. Chromosoma. 1980;81(1):125-36.
[25] Lakhotia SC, Mukherjee T. Specific induction of the 93D puff in Drosophila melanogaster by a homogenate of heat shocked larval salivary gland. Indian J Exp Biol. 1981; 19(1):1-4.
[26] Singh AK, Lakhotia SC. Further observations on inducibility if 93D puff of Drosophila melanogaster by homogenate of heat shocked cells. Indian J Exp Biol. 1983; 21(3):363-6.
[27] Mukherjee T, Lakhotia SC. Heat shock puff activity in salivary glands of drosophila melanogaster larvae during recovery from anoxia at 2 different temperatures. Indian J Exp Biol. 1982; 20(3):437-9.
[28] Lakhotia SC, Mukherjee T. Specific induction of the 93D puff in polytene nuclei of Drosophila melanogaster by colchicine. Indian J Exp Biol. 1984;22(2):67-70.
[29] Leenders HJ, Berendes HD. The effect of changes in the respiratory metabolism upon genome activity in Drosophila. I. The induction of gene activity. Chromosoma. 1972;37(4):433-44.
[30] Leenders HJ, Beckers PJ. The effect of changes in the respiratory metabolism upon genome activity. A correlation between induced gene activity and an increase in activity of a respiratory enzyme. J Cell Biol. 1972;55(2):257-65.
[31] Derksen J, Berendes HD, Willart E. Production and release of a locus-specific ribonucleoprotein product in polytene nuclei of Drosophila hydei. J Cell Biol. 1973;59(3):661-8.
[32] Leenders HJ, Knoppien WG. Respiration of larval salivary glands of Drosophila in relation to the activity of specific genome loci. J Insect Physiol. 1973;19(9):1793-800.
[33] Brady T, Belew K. Pyridoxine induced puffing (II-48 C) and synthesis of a 40 KD protein in Drosophila hydei salivary glands. Chromosoma. 1981;82(1):89-98.
[34] Belew K, Brady T. Induction of tyrosine aminotransferase by pyridoxine in Drosophila hydei. Chromosoma. 1981;82(1):99-106.
[35] Scalenghe F, Ritossa F. The puff inducible in region 93D is responsible for the synthesis of the major "heat-shock" polypeptide in Drosophila melanogaster. Chromosoma. 1977;63(4):317–27.
[36] Derksen J. Induced RNP production in different cell types of Drosophila. Cell Differ. 1975;4(1):1-10.
[37] Swift H. Nuclear morphology of the chromosome. The Chromosome in Vitro. 1965; 1(1):26-49.
[38] Gubenko IS, Evgen'ev MB. Cytological and linkage maps of Drosophila virilis chromosomes. Genetica. 1984;65(2):127–39.
[39] Leenders HJ, Derksen J, Maas PMJM, Berendes HD. Selective induction of a giant puff in Drosophila hydei by vitamin B6 and derivatives. Chromosoma. 1973;41(4):447–60.
[40] Derksen J, Willart E. Cytochemical studies on RNP complexes produced by puff 2-48BC in Drosophila hydei: uranyl acetate and phosphotungstic acid staining. Chromosoma. 1976;55(1):57-68.
[41] Dangli A, Grond C, Kloetzel P, Bautz EK. Heat-shock puff 93 D from Drosophila melanogaster: accumulation of a RNP-specific antigen associated with giant particles of possible storage function. EMBO J. 1983;2(10):1747-51.
[42] Dangli A, Bautz EK. Differential distribution of nonhistone proteins from polytene chromosomes of Drosophila melanogaster after heat shock. Chromosoma. 1983;88(3):201-7.
[43] Lengyel JA, Ransom LJ, Graham ML, Pardue ML. Transcription and metabolism of RNA from the Drosophila melanogaster heat shock puff site 93D. Chromosoma. 1980;80(3):237-52.
[44] Bonner JJ, Kerby RL. RNA polymerase II transcribes all of the heat shock induced genes of Drosophila melanogaster. Chromosoma. 1982;85(1):93-108.
[45] Lubsen NH, Sondermeijer PJ, Pages M, Alonso C. In situ hybridization of nuclear and cytoplasmic RNA to locus 2-48BC in Drosophila hydei. Chromosoma. 1978;65(3):199-212.
[46] Sondermeijer PJ, Lubsen NH. The activity of two heat shock loci of Drosophila hydei in tissue culture cells and salivary gland cells as analyzed by in situ hybridization of complementary DNA. Chromosoma. 1979;72(3):281-91.
[47] Bisseling T, Berendes HD, Lubsen NH. RNA synthesis in puff 2-48BC after experimental induction in Drosophila hydei. Cell. 1976;8(2):299-304.
[48] Zhimulev IF, Belyaeva ES, Semeshin VF. Informational content of polytene chromosome bands and puffs. CRC Crit Rev Biochem. 1981;11(4):303-40. Review.
[49] Mohler J, Pardue ML. Deficiency mapping of the 93D heat-shock locus in Drosophila melanogaster. Chromosoma. 1982;86(4):457-67.
[50] Semeshin VF, Baricheva EM, Belyaeva ES, Zhimulev IF. Electron microscopical analysis of Drosophila polytene chromosomes. III. Mapping of puffs developing from one band. Chromosoma. 1985;91(3-4):234-50.
[51] Mohler J, Pardue ML. Mutational Analysis of the Region Surrounding the 93d Heat Shock Locus of Drosophila Melanogaster. Genetics. 1984;106(2):249-65.
[52] Berendes HD, Alonso C, Helmsing PJ, Leenders HJ, Derksen J. Structure and function in the genome of Drosophila hydei. Cold Spring Harb Symp Quant Biol. 1974;38:645-54.
[53] Grond CJ, Derksen J. The banding pattern of the salivary gland chromosomes of Drosophila hydei. Eur J Cell Biol. 1983;30(1):144-8.
[54] Grond CJ, Peters FP, Derksen J, van der Ploeg M. Identification of the heat shock band 2-48B of Drosophila hydei and determination of its haploid DNA content. Eur J Cell Biol. 1983;31(1):150-7.
[55] Peters FP, Grond CJ, Sondermeijer PJ, Lubsen NH. Chromosomal arrangement of heat shock locus 2-48B in Drosophila hydei. Chromosoma. 1982;85(2):237-49.
[56] D'Alessandro A, Ritossa F, Scalenghe F. Cytological localization of the «ebony» locus in Drosophila. Drosophila Inf Serv. 1977; 52:46.
[57] Grond CJ, Lubsen NH, Beck H. Recombination frequency and DNA content of the distal part of the second chromosome of Drosophila hydei Sturtevant. Experientia. 1982;38(3):328-9.
[58] Henikoff S. A more conventional view of the «ebony» gene. Drosophila Inf. Serv. 1980;55:61.
[59] Hovemann B, Walldorf U, Ryseck R-P. Heat-shock locus 93D of Drosophila melanogaster: An RNA with limited coding capacity accumulates precursor transcripts after heat shock. Mol Gen Genet. 1986;204(2):334–40.
[60] Caizzi R, Ritossa F, Ryseck R-P, Richter S, Hovemann B. Characterization of the ebony locus in Drosophila melanogaster. Mol Gen Genet. 1987;206(1):66–70.
[61] Burma P, Lakhotia SC. Expression of 93D heat shock puff of Drosophila melanogaster in deficiency genotypes and its influence on activity of the 87C puff. Chromosoma. 1986;94(4):273–8.
[62] Walldorf U, Richter S, Ryseck RP, Steller H, Edstrom JE, Bautz EK, Hovemann B. Cloning of heat-shock locus 93D from Drosophila melanogaster. EMBO J. 1984;3(11):2499-504.
[63] Scalenghe F, Turco E, Edstrom JE, Pirrotta V, Melli M. Microdissection and cloning of DNA from a specific region of Drosophila melanogaster polytene chromosomes. Chromosoma. 1981;82(2):205-16.
[64] Ryseck RP, Walldorf U, Hovemann B. Two major RNA products are transcribed from heat-shock locus 93D of Drosophila melanogaster. Chromosoma. 1985;93(1):17-20.
[65] Peters FP, Lubsen NH, Walldorf U, Moormann RJ, Hovemann B. The unusual structure of heat shock locus 2-48B in Drosophila hydei. Mol Gen Genet. 1984;197(3):392-8.
[66] Garbe JC, Bendena WG, Alfano M, Pardue ML. A Drosophila heat shock locus with a rapidly diverging sequence but a conserved structure. J Biol Chem. 1986;261(36):16889-94.
[67] Garbe JC, Pardue ML. Heat shock locus 93D of Drosophila melanogaster: a spliced RNA most strongly conserved in the intron sequence. Proc Natl Acad Sci U S A. 1986;83(6):1812-6.
[68] Ryseck RP, Walldorf U, Hoffmann T, Hovemann B. Heat shock loci 93D of Drosophila melanogaster and 48B of Drosophila hydei exhibit a common structural and transcriptional pattern. Nucleic Acids Res. 1987;15(8):3317-33.
[69] Evgen'ev MB, Yenikolopov GN, Peunova NI, Ilyin YV. Transposition of mobile genetic elements in interspecific hybrids of Drosophila. Chromosoma. 1982;85(3):375-86.
[70] Zelentsova ES, Vashakidze RP, Peunova NI, Evgen'ev MB. Scattered throughout the genome repetitive sequences in species of the Drosophila group virilis. 1. The restriction enzyme analysis, replication, transcription. Mol Biol (Mosk). 1985; 19(5):1367-1377.
[71] Gubenko IS, Evgen'ev MB. Polytene chromosome regions of Drosophila virilis contaning multiple dispersed p DvIII DNA sequences. Genetika. 1986; 22(3):457-66.
[72] Zelentsova ES, Vashakidze RP, Krayev AS, Evgen'ev MB. Dispersed repeats in Drosophila virilis: elements mobilized by interspecific hybridization. Chromosoma. 1986;93(6):469–76.
[73] Belew K, Brady T. Changes in phenol-soluble nuclear proteins correlated with puff induction in Drosophila hydei. Cell Diff. 1981;10(4):229–35.
[74] Evgen’ev MB, Zatsepina OL, Titarenko H. Autoregulation of heat-shock system in Drosophila Melanogaster. FEBS Lett. 1985;188(2):286–90.
[75] Saluz HP, Schmidt T, Dudler R, Altwegg M, Stumm-Zollinger E, Kubli E, Chen PS. The genes coding for 4 snRNAs of Drosophila melanogaster: localization and determination of gene numbers. Nucleic Acids Res. 1983;11(1):77-90.
[76] Lis JT, Prestidge L, Hogness DS. A novel arrangement of tandemly repeated genes at a major heat shock site in D. melanogaster. Cell. 1978;14(4):901-19.
[77] Kar Chowdhuri D, Lakhotia SC. Different effects of 93D on 87C heat shock puff activity in Drosophila melanogaster and D. simulans. Chromosoma. 1986;94(4):279–84.
[78] Parker CS, Topol J. A Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp 70 gene. Cell. 1984;37(1):273-83.
[79] Wu C. An exonuclease protection assay reveals heat-shock element and TATA box DNA-binding proteins in crude nuclear extracts. Nature. 1985 Sep 5-11;317(6032):84-7.