Biopolym. Cell. 1989; 5(3):83-88.
Structure and Function of Biopolymers
Fibronectin conformation with different ionic strength of the solution as determined by circular dichroism methods and thermal-perturbation differential spectroscopy
1Sykulev Yu. K., 1Tetin S. Yu., 1Atamas S. P., 1Matulskaya L. I., 1Panasyuk A. F., 2Troitsky G. V.
  1. Institute of Rheumatology, Academy of Medical Sciences of the USSR
    Moscow, USSR
  2. Crimean Medical Institute,
    Simferopol, USSR


Conformation of plasma fibronectin was determined by circular dichroism and thermal perturbation differential spectroscopy with different ionic strength of the solution. It was found that conformational transition in fibronectin molecule, induced by an increase of the ionic solution strength was followed by no changes in secondary and tertiary structure of protein but was a result of changes in relative arrangement and domain-domain interaction in space.


[1] Vartio T. Fibronectin: multiple interactions assigned to structural domains. Med Biol. 1983;61(6):283-95.
[2] Yamada KM. Cell Surface Interactions with Extracellular Materials. Ann Rev Biochem. 1983;52(1):761–99.
[3] Petersen T. E., Skorstetigaard K. Primary structure. Plasma fibronectin . Ed. J. McDonagh. New York; Basel: Marcel Dekker, 1985:7-29.
[4] Petersen TE, Thogersen HC, Skorstengaard K, Vibe-Pedersen K, Sahl P, Sottrup-Jensen L, Magnusson S. Partial primary structure of bovine plasma fibronectin: three types of internal homology. Proc Natl Acad Sci U S A. 1983;80(1):137-41.
[5] Erickson H. P. Structure seen by electron microscopy. Plasma fibronectin. Ed. J. McDonagh. New York; Basel: Marcel Dekker, 1985:31-51.
[6] Hormann H, Richter H. Models for the subunit arrangement in soluble and aggregated plasma fibronectin. Biopolymers. 1986;25(5):947-58.
[7] Demchenko AP. UV sPectroPhotometry and the structure of proteins. Kyiv, Naukova Dumka, 1981; 208 P.
[8] Vuento M, Vaheri A. Purification of fibronectin from human plasma by affinity chromatography under non-denaturing conditions. Biochem J. 1979;183(2):331-7.
[9] Mosesson MW, Umfleet RA. The cold-insoluble globulin of human plasma. I. Purification, primary characterization, and relationship to fibrinogen and other cold-insoluble fraction components. J Biol Chem. 1970;245(21):5728-36.
[10] Atamas SP, Tetin SYu, Troitskiy GV. Apperance of long-wave maximum in temperature perturbation difference spectra of proteins as a result of tyrosine residues. Biofizika. 1985;30(6):967-70.
[11] Tetin SYu, Atamas' SP, Efetov KA. The revised method of calculating the temperature-swing-differential spectra of proteins. V All-Union conf. sPectroscoPy on bioPolymers: Proc. of reports. Kharkiv, 1984; 238.
[12] Alexander SS Jr, Colonna G, Edelhoch H. The structure and stability of human plasma cold-insoluble globulin. J Biol Chem. 1979;254(5):1501-5.
[13] Lai CS, Tooney NM, Ankel EG. Structure and flexibility of plasma fibronectin in solution: electron spin resonance spin-label, circular dichroism, and sedimentation studies. Biochemistry. 1984;23(26):6393-7.
[14] Litman GW, Frommel D, Rosenberg A, Good RA. Circular dichroic analysis of immunoglobulins in phylogenetic perspective. Biochim Biophys Acta. 1971;236(3):647-54.
[15] Koteliansky VE, Glukhova MA, Bejanian MV, Smirnov VN, Filimonov VV, Zalite OM, Venyaminov SYu. A study of the structure of fibronectin. Eur J Biochem. 1981;119(3):619-24.
[16] Venyaminov SYu, Metsis ML, Chernousov MA, Koteliansky VE. Distribution of secondary structure along the fibronectin molecule. Eur J Biochem. 1983;135(3):485-9.
[17] Ghose AC, Jirgensons B. Circular dichroism studies on the variable and constant halves of kappa-type Bence-Jones proteins. Biochim Biophys Acta. 1971;251(1):14-20.
[18] Dixon M, Webb EC. Enzymes. 3nd ed. New York, Acad. Press, 1979; 1116 P.
[19] Keil-Dlouha V, Planchenault T. Potential proteolytic activity of human plasma fibronectin. Proc Natl Acad Sci U S A. 1986;83(15):5377-81.
[20] Beaven GH, Holiday ER. Ultraviolet absorption spectra of proteins and amino acids. Adv Protein Chem. 1952;7:319-86.