Biopolym. Cell. 1993; 9(5):101-106.
Gene-Engineering Biotechnology
Heat inducible inhibition of the neomycin phosphotransferase II activity in transgenic tobacco cells
1Bogdarina I. G., 1Myrchova M. I., 1Buryanov Ya. I.
  1. Branch of the M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, RAS
    Pushchino, Moscow, Russian Federation, 142290

Abstract

Double transformed tobacco plants were obtained by successive transformation using two nptll gene constructs: the sense gene under the control of the constitutive nos promoter and the antisense form under the control of the inducible Drosophila melanogaster hsp70 promoter. Virtually total inhibition of the neomycin phosphotransferase II activity was observed in these plants only in response to heat shock. The same effect was observed in experiments on transient expression of the nptll gene in protoplasts of single transformed plants carrying the antisense nptll gene under the hsp70 promoter. Therefore, the hsp70 promoter can be used in anlisens'e gene construction to inducibiy repress gene expression in transgenic plants.

References

[1] van der Krol AR, Mol JN, Stuitje AR. Antisense genes in plants: an overview. Gene. 1988;72(1-2):45-50.
[2] Spena A, Hain R, Ziervogel U, Saedler H, Schell J. Construction of a heat-inducible gene for plants. Demonstration of heat-inducible activity of the Drosophila hsp70 promoter in plants. EMBO J. 1985;4(11):2739-43.
[3] Sorger PK. Heat shock factor and the heat shock response. Cell. 1991;65(3):363-6.
[4] Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körber H, Redei GP, Schell J. High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci U S A. 1989;86(21):8467-71.
[5] Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC. Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A. 1983;80(15):4803-7.
[6] Maniatis T, Fritsch EF, Sambrook J. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Lab, 1982; 545 p.
[7] Wing D, Koncz C, Schell J. Conserved function in Nicotiana tabacum of a single Drosophila hsp70 promoter heat shock element when fused to a minimal T-DNA promoter. Mol Gen Genet. 1989;219(1-2):9-16.
[8] Ditta G, Stanfield S, Corbin D, Helinski DR. Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1980;77(12):7347-51.
[9] Herrera-Estrella L, Teeri TH, Simpson J. Use of reporter genes to study gene expression in plant cells. Plant molecular, biol. manual. Eds S. B. Gelvin, R. A. Schilperoort, D. P. S. Verma. Dordrecht; Boston; London : Kluwer Acad. Publ., 1991: 1-22.
[10] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248-54.
[11] Zinkevich BE, Bogdarin IG, Rukavtsova EB et al. Inhibition of gene expression neomycin II in tobacco protoplasts by antisense RNA. Dokl Akad Nauk SSSR. 1988;300(3): 727-30.
[12] Spena A, Schell J. The expression of a heat-inducible chimeric gene in transgenic tobacco plants. Mol Gen Genet. 1987;206(3):436–40.
[13] Robert LS, Donaldson PA, Ladaique C, Altosaar I, Arnison PG, Fabijanski SF. Antisense RNA Inhibition of β-Glucuronidase Gene Expression in Transgenic Tobacco can be Transiently Overcome Using a Heat-Inducible β-Glucuronidase Gene Construct. Bio/Technology. 1990;8(5):459–64.
[14] Matzke MA, Primig M, Trnovsky J, Matzke AJ. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 1989;8(3):643-9.
[15] Goring DR, Thomson L, Rothstein SJ. Transformation of a partial nopaline synthase gene into tobacco suppresses the expression of a resident wild-type gene. Proc Natl Acad Sci U S A. 1991;88(5):1770-4.