Biopolym. Cell. 1994; 10(5):5-30.
Регуляторні гени ВІЛ та ix роль у реалізації геному
1Кухаренко О. П., 1Швед А. Д.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

В огляді наведено відомості щодо наукових публікацій з вивчення ролі та функції допоміжних регуляторних генів nef, vpu, vpr, vif, tat та rev ВІЛ-1 в його репродукції. Увагу переважно приділено генам tat, rev i ix продуктам як найвпливовішим регуляторам активности ВІЛ-1 та інших представниюв групи лентивірусів, а також гену nef. Розглянуто можливі механізми впливу цих генів на експресію провірусу за участю факторів клітин-хазяїна та на фізіологічні процеси, що відбуваються у BIЛ-інфікованих клітинах.

References

[1] Delassus S, Cheynier R, Wain-Hobson S. Evolution of human immunodeficiency virus type 1 nef and long terminal repeat sequences over 4 years in vivo and in vitro. J Virol. 1991;65(1):225-31.
[2] Kaminchik J, Bashan N, Itach A, Sarver N, Gorecki M, Panet A. Genetic characterization of human immunodeficiency virus type 1 nef gene products translated in vitro and expressed in mammalian cells. J Virol. 1991;65(2):583-8.
[3] Guy B, Rivière Y, Dott K, Regnault A, Kieny MP. Mutational analysis of the HIV nef protein. Virology. 1990;176(2):413-25.
[4] Michael NL, Morrow P, Mosca J, Vahey M, Burke DS, Redfield RR. Induction of human immunodeficiency virus type 1 expression in chronically infected cells is associated primarily with a shift in RNA splicing patterns. J Virol. 1991;65(3):1291-303.
[5] Laurent AG, Hovanessian AG, Rivière Y, Krust B, Regnault A, Montagnier L, Findeli A, Kieny MP, Guy B. Production of a non-functional nef protein in human immunodeficiency virus type 1-infected CEM cells. J Gen Virol. 1990;71 ( Pt 10):2273-81.
[6] Cullen BR, Greene WC. Functions of the auxiliary gene products of the human immunodeficiency virus type 1. Virology. 1990;178(1):1-5.
[7] Nebreda AR, Bryan T, Segade F, Wingfield P, Venkatesan S, Santos E. Biochemical and biological comparison of HIV-1 NEF and ras gene products. Virology. 1991;183(1):151-9.
[8] Kim S, Ikeuchi K, Byrn R, Groopman J, Baltimore D. Lack of a negative influence on viral growth by the nef gene of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A. 1989;86(23):9544-8.
[9] Hammes SR, Dixon EP, Malim MH, Cullen BR, Greene WC. Nef protein of human immunodeficiency virus type 1: evidence against its role as a transcriptional inhibitor. Proc Natl Acad Sci U S A. 1989;86(23):9549-53.
[10] Bachelerie F, Alcami J, Hazan U, Israël N, Goud B, Arenzana-Seisdedos F, Virelizier JL. Constitutive expression of human immunodeficiency virus (HIV) nef protein in human astrocytes does not influence basal or induced HIV long terminal repeat activity. J Virol. 1990;64(6):3059-62.
[11] de Ronde A, Klaver B, Keulen W, Smit L, Goudsmit J. Natural HIV-1 NEF accelerates virus replication in primary human lymphocytes. Virology. 1992;188(1):391-5.
[12] Skowronski J, Parks D, Mariani R. Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene. EMBO J. 1993;12(2):703-13.
[13] Ahmad N, Venkatesan S. Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR. Science. 1988;241(4872):1481-5. Erratum in: Science 1988 Oct 7;242(4875):242.
[14] Cheng-Mayer C, Iannello P, Shaw K, Luciw PA, Levy JA. Differential effects of nef on HIV replication: implications for viral pathogenesis in the host. Science. 1989;246(4937):1629-32.
[15] Luria S, Chambers I, Berg P. Expression of the type 1 human immunodeficiency virus Nef protein in T cells prevents antigen receptor-mediated induction of interleukin 2 mRNA. Proc Natl Acad Sci U S A. 1991;88(12):5326-30.
[16] Poulin L, Levy JA. The HIV-1 nef gene product is associated with phosphorylation of a 46 kD cellular protein. AIDS. 1992;6(8):787-91.
[17] Werner T, Ferroni S, Saermark T, Brack-Werner R, Banati RB, Mager R, Steinaa L, Kreutzberg GW, Erfle V. HIV-1 Nef protein exhibits structural and functional similarity to scorpion peptides interacting with K+ channels. AIDS. 1991;5(11):1301-8.
[18] Burch HB, Nagy EV, Lukes YG, Cai WY, Wartofsky L, Burman KD. Nucleotide and amino acid homology between the human thyrotropin receptor and the HIV-1 Nef protein: identification and functional analysis. Biochem Biophys Res Commun. 1991;181(1):498-505.
[19] Strebel K, Klimkait T, Maldarelli F, Martin MA. Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein. J Virol. 1989;63(9):3784-91.
[20] Strebel K, Klimkait T, Martin MA. A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science. 1988;241(4870):1221-3.
[21] Terwilliger EF, Cohen EA, Lu YC, Sodroski JG, Haseltine WA. Functional role of human immunodeficiency virus type 1 vpu. Proc Natl Acad Sci U S A. 1989;86(13):5163-7.
[22] Arrigo SJ, Chen IS. Rev is necessary for translation but not cytoplasmic accumulation of HIV-1 vif, vpr, and env/vpu 2 RNAs. Genes Dev. 1991;5(5):808-19.
[23] Schwartz S, Felber BK, Fenyö EM, Pavlakis GN. Env and Vpu proteins of human immunodeficiency virus type 1 are produced from multiple bicistronic mRNAs. J Virol. 1990;64(11):5448-56.
[24] Cohen EA, Dehni G, Sodroski JG, Haseltine WA. Human immunodeficiency virus vpr product is a virion-associated regulatory protein. J Virol. 1990;64(6):3097-9.
[25] Shibata R, Miura T, Hayami M, Ogawa K, Sakai H, Kiyomasu T, Ishimoto A, Adachi A. Mutational analysis of the human immunodeficiency virus type 2 (HIV-2) genome in relation to HIV-1 and simian immunodeficiency virus SIV (AGM). J Virol. 1990;64(2):742-7.
[26] Ogawa K, Shibata R, Kiyomasu T, Higuchi I, Kishida Y, Ishimoto A, Adachi A. Mutational analysis of the human immunodeficiency virus vpr open reading frame. J Virol. 1989;63(9):4110-4.
[27] Levy DN, Fernandes LS, Williams WV, Weiner DB. Induction of cell differentiation by human immunodeficiency virus 1 vpr. Cell. 1993;72(4):541-50.
[28] Sakai H, Shibata R, Miura T, Hayami M, Ogawa K, Kiyomasu T, Ishimoto A, Adachi A. Complementation of the rev gene mutation among human and simian lentiviruses. J Virol. 1990;64(5):2202-7.
[29] Golub EI, Li GG, Volsky DJ. Differences in the basal activity of the long terminal repeat determine different replicative capacities of two closely related human immunodeficiency virus type 1 isolates. J Virol. 1990;64(8):3654-60.
[30] Sakai K, Ma XY, Gordienko I, Volsky DJ. Recombinational analysis of a natural noncytopathic human immunodeficiency virus type 1 (HIV-1) isolate: role of the vif gene in HIV-1 infection kinetics and cytopathicity. J Virol. 1991;65(11):5765-73.
[31] Felber BK, Drysdale CM, Pavlakis GN. Feedback regulation of human immunodeficiency virus type 1 expression by the Rev protein. J Virol. 1990;64(8):3734-41.
[32] Terwilliger E, Burghoff R, Sia R, Sodroski J, Haseltine W, Rosen C. The art gene product of human immunodeficiency virus is required for replication. J Virol. 1988;62(2):655-8.
[33] Hammarskjöld ML, Heimer J, Hammarskjöld B, Sangwan I, Albert L, Rekosh D. Regulation of human immunodeficiency virus env expression by the rev gene product. J Virol. 1989;63(5):1959-66.
[34] Sodroski J, Goh WC, Rosen C, Dayton A, Terwilliger E, Haseltine W. A second post-transcriptional trans-activator gene required for HTLV-III replication. Nature. 1986 May 22-28;321(6068):412-7.
[35] Cochrane AW, Golub E, Volsky D, Ruben S, Rosen CA. Functional significance of phosphorylation to the human immunodeficiency virus Rev protein. J Virol. 1989;63(10):4438-40.
[36] Hope TJ, McDonald D, Huang XJ, Low J, Parslow TG. Mutational analysis of the human immunodeficiency virus type 1 Rev transactivator: essential residues near the amino terminus. J Virol. 1990;64(11):5360-6.
[37] Zapp ML, Green MR. Sequence-specific RNA binding by the HIV-1 Rev protein. Nature. 1989;342(6250):714-6.
[38] Sadaie MR, Benter T, Wong-Staal F. Site-directed mutagenesis of two trans-regulatory genes (tat-III,trs) of HIV-1. Science. 1988;239(4842):910-3.
[39] Cochrane AW, Perkins A, Rosen CA. Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J Virol. 1990;64(2):881-5.
[40] Kubota S, Nosaka T, Cullen BR, Maki M, Hatanaka M. Effects of chimeric mutants of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex on nucleolar targeting signals. J Virol. 1991;65(5):2452-6.
[41] Hadzopoulou-Cladaras M, Felber BK, Cladaras C, Athanassopoulos A, Tse A, Pavlakis GN. The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J Virol. 1989;63(3):1265-74.
[42] Malim MH, Böhnlein S, Hauber J, Cullen BR. Functional dissection of the HIV-1 Rev trans-activator--derivation of a trans-dominant repressor of Rev function. Cell. 1989;58(1):205-14.
[43] Rimsky L, Dodon MD, Dixon EP, Greene WC. Trans-dominant inactivation of HTLV-I and HIV-1 gene expression by mutation of the HTLV-I Rex transactivator. Nature. 1989;341(6241):453-6.
[44] Dillon PJ, Nelbock P, Perkins A, Rosen CA. Structural and functional analysis of the human immunodeficiency virus type 2 Rev protein. J Virol. 1991;65(1):445-9.
[45] Böhnlein S, Pirker FP, Hofer L, Zimmermann K, Bachmayer H, Böhnlein E, Hauber J. Transdominant repressors for human T-cell leukemia virus type I rex and human immunodeficiency virus type 1 rev function. J Virol. 1991;65(1):81-8.
[46] Daly TJ, Rennert P, Lynch P, Barry JK, Dundas M, Rusche JR, Doten RC, Auer M, Farrington GK. Perturbation of the carboxy terminus of HIV-1 Rev affects multimerization on the Rev responsive element. Biochemistry. 1993;32(34):8945-54.
[47] Malim MH, Cullen BR. HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell. 1991;65(2):241-8.
[48] Felber BK, Hadzopoulou-Cladaras M, Cladaras C, Copeland T, Pavlakis GN. rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci U S A. 1989;86(5):1495-9.
[49] Knight DM, Flomerfelt FA, Ghrayeb J. Expression of the art/trs protein of HIV and study of its role in viral envelope synthesis. Science. 1987;236(4803):837-40.
[50] Emerman M, Vazeux R, Peden K. The rev gene product of the human immunodeficiency virus affects envelope-specific RNA localization. Cell. 1989;57(7):1155-65.
[51] Kim JH, Kaufman PA, Hanly SM, Rimsky LT, Greene WC. Rex transregulation of human T-cell leukemia virus type II gene expression. J Virol. 1991;65(1):405-14.
[52] Rosen CA, Terwilliger E, Dayton A, Sodroski JG, Haseltine WA. Intragenic cis-acting art gene-responsive sequences of the human immunodeficiency virus. Proc Natl Acad Sci U S A. 1988;85(7):2071-5.
[53] Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature. 1989;338(6212):254-7.
[54] Dayton ET, Powell DM, Dayton AI. Functional analysis of CAR, the target sequence for the Rev protein of HIV-1. Science. 1989;246(4937):1625-9.
[55] Lewis N, Williams J, Rekosh D, Hammarskjöld ML. Identification of a cis-acting element in human immunodeficiency virus type 2 (HIV-2) that is responsive to the HIV-1 rev and human T-cell leukemia virus types I and II rex proteins. J Virol. 1990;64(4):1690-7.
[56] Yip MT, Dynan WS, Green PL, Black AC, Arrigo SJ, Torbati A, Heaphy S, Ruland C, Rosenblatt JD, Chen IS. Human T-cell leukemia virus (HTLV) type II Rex protein binds specifically to RNA sequences of the HTLV long terminal repeat but poorly to the human immunodeficiency virus type 1 Rev-responsive element. J Virol. 1991;65(5):2261-72.
[57] Daly TJ, Cook KS, Gray GS, Maione TE, Rusche JR. Specific binding of HIV-1 recombinant Rev protein to the Rev-responsive element in vitro. Nature. 1989;342(6251):816-9.
[58] Huang XJ, Hope TJ, Bond BL, McDonald D, Grahl K, Parslow TG. Minimal Rev-response element for type 1 human immunodeficiency virus. J Virol. 1991;65(4):2131-4.
[59] Cook KS, Fisk GJ, Hauber J, Usman N, Daly TJ, Rusche JR. Characterization of HIV-1 REV protein: binding stoichiometry and minimal RNA substrate. Nucleic Acids Res. 1991;19(7):1577-83.
[60] Karn J, Dingwall C, Finch JT, Heaphy S, Gait MJ. RNA binding by the tat and rev proteins of HIV-1. Biochimie. 1991;73(1):9-16.
[61] Heaphy S, Finch JT, Gait MJ, Karn J, Singh M. Human immunodeficiency virus type 1 regulator of virion expression, rev, forms nucleoprotein filaments after binding to a purine-rich "bubble" located within the rev-responsive region of viral mRNAs. Proc Natl Acad Sci U S A. 1991;88(16):7366-70.
[62] Holland SM, Chavez M, Gerstberger S, Venkatesan S. A specific sequence with a bulged guanosine residue(s) in a stem-bulge-stem structure of Rev-responsive element RNA is required for trans activation by human immunodeficiency virus type 1 Rev. J Virol. 1992;66(6):3699-706.
[63] Iwai S, Pritchard C, Mann DA, Karn J, Gait MJ. Recognition of the high affinity binding site in rev-response element RNA by the human immunodeficiency virus type-1 rev protein. Nucleic Acids Res. 1992;20(24):6465-72.
[64] Lu YC, Touzjian N, Stenzel M, Dorfman T, Sodroski JG, Haseltine WA. Identification of cis-acting repressive sequences within the negative regulatory element of human immunodeficiency virus type 1. J Virol. 1990;64(10):5226-9.
[65] Chang DD, Sharp PA. Regulation by HIV Rev depends upon recognition of splice sites. Cell. 1989;59(5):789-95.
[66] Chang DD, Sharp PA. Messenger RNA transport and HIV rev regulation. Science. 1990;249(4969):614-5.
[67] Kjems J, Brown M, Chang DD, Sharp PA. Structural analysis of the interaction between the human immunodeficiency virus Rev protein and the Rev response element. Proc Natl Acad Sci U S A. 1991;88(3):683-7.
[68] Olsen HS, Cochrane AW, Dillon PJ, Nalin CM, Rosen CA. Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. Genes Dev. 1990;4(8):1357-64.
[69] Lu XB, Heimer J, Rekosh D, Hammarskjöld ML. U1 small nuclear RNA plays a direct role in the formation of a rev-regulated human immunodeficiency virus env mRNA that remains unspliced. Proc Natl Acad Sci U S A. 1990;87(19):7598-602.
[70] Fankhauser C, Izaurralde E, Adachi Y, Wingfield P, Laemmli UK. Specific complex of human immunodeficiency virus type 1 rev and nucleolar B23 proteins: dissociation by the Rev response element. Mol Cell Biol. 1991;11(5):2567-75.
[71] Constantoulakis P, Campbell M, Felber BK, Nasioulas G, Afonina E, Pavlakis GN. Inhibition of Rev-mediated HIV-1 expression by an RNA binding protein encoded by the interferon-inducible 9-27 gene. Science. 1993;259(5099):1314-8.
[72] Robert-Guroff M, Popovic M, Gartner S, Markham P, Gallo RC, Reitz MS. Structure and expression of tat-, rev-, and nef-specific transcripts of human immunodeficiency virus type 1 in infected lymphocytes and macrophages. J Virol. 1990;64(7):3391-8.
[73] Schwartz S, Felber BK, Benko DM, Fenyö EM, Pavlakis GN. Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol. 1990;64(6):2519-29.
[74] Berkhout B, Silverman RH, Jeang KT. Tat trans-activates the human immunodeficiency virus through a nascent RNA target. Cell. 1989;59(2):273-82.
[75] Wright CM, Felber BK, Paskalis H, Pavlakis GN. Expression and characterization of the trans-activator of HTLV-III/LAV virus. Science. 1986;234(4779):988-92.
[76] Benko DM, Schwartz S, Pavlakis GN, Felber BK. A novel human immunodeficiency virus type 1 protein, tev, shares sequences with tat, env, and rev proteins. J Virol. 1990;64(6):2505-18.
[77] Sadaie MR, Mukhopadhyaya R, Benaissa ZN, Pavlakis GN, Wong-Staal F. Conservative mutations in the putative metal-binding region of human immunodeficiency virus tat disrupt virus replication. AIDS Res Hum Retroviruses. 1990;6(11):1257-63.
[78] Gitlin SD, Lindholm PF, Marriott SJ, Brady JN. Transdominant human T-cell lymphotropic virus type I TAX1 mutant that fails to localize to the nucleus. J Virol. 1991;65(5):2612-21.
[79] Green M, Ishino M, Loewenstein PM. Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell. 1989;58(1):215-23.
[80] Carroll R, Martarano L, Derse D. Identification of lentivirus tat functional domains through generation of equine infectious anemia virus/human immunodeficiency virus type 1 tat gene chimeras. J Virol. 1991;65(7):3460-7.
[81] Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F. HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell. 1986;46(6):807-17.
[82] Feng S, Holland EC. HIV-1 tat trans-activation requires the loop sequence within tar. Nature. 1988;334(6178):165-7.
[83] Hauber J, Perkins A, Heimer EP, Cullen BR. Trans-activation of human immunodeficiency virus gene expression is mediated by nuclear events. Proc Natl Acad Sci U S A. 1987;84(18):6364-8.
[84] Jakobovits A, Smith DH, Jakobovits EB, Capon DJ. A discrete element 3' of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIV trans activator. Mol Cell Biol. 1988;8(6):2555-61.
[85] Selby MJ, Bain ES, Luciw PA, Peterlin BM. Structure, sequence, and position of the stem-loop in tar determine transcriptional elongation by tat through the HIV-1 long terminal repeat. Genes Dev. 1989;3(4):547-58.
[86] Selby MJ, Peterlin BM. Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell. 1990;62(4):769-76.
[87] Gatignol A, Buckler-White A, Berkhout B, Jeang KT. Characterization of a human TAR RNA-binding protein that activates the HIV-1 LTR. Science. 1991;251(5001):1597-600.
[88] Weeks KM, Ampe C, Schultz SC, Steitz TA, Crothers DM. Fragments of the HIV-1 Tat protein specifically bind TAR RNA. Science. 1990;249(4974):1281-5.
[89] Cordingley MG, LaFemina RL, Callahan PL, Condra JH, Sardana VV, Graham DJ, Nguyen TM, LeGrow K, Gotlib L, Schlabach AJ, et al. Sequence-specific interaction of Tat protein and Tat peptides with the transactivation-responsive sequence element of human immunodeficiency virus type 1 in vitro. Proc Natl Acad Sci U S A. 1990;87(22):8985-9.
[90] Roy S, Parkin NT, Rosen C, Itovitch J, Sonenberg N. Structural requirements for trans activation of human immunodeficiency virus type 1 long terminal repeat-directed gene expression by tat: importance of base pairing, loop sequence, and bulges in the tat-responsive sequence. J Virol. 1990;64(3):1402-6.
[91] Weeks KM, Crothers DM. RNA recognition by Tat-derived peptides: interaction in the major groove? Cell. 1991;66(3):577-88.
[92] Kao SY, Calman AF, Luciw PA, Peterlin BM. Anti-termination of transcription within the long terminal repeat of HIV-1 by tat gene product. Nature. 1987 Dec 3-9;330(6147):489-93.
[93] Rice AP, Mathews MB. Transcriptional but not translational regulation of HIV-1 by the tat gene product. Nature. 1988;332(6164):551-3.
[94] Feinberg MB, Baltimore D, Frankel AD. The role of Tat in the human immunodeficiency virus life cycle indicates a primary effect on transcriptional elongation. Proc Natl Acad Sci U S A. 1991;88(9):4045-9.
[95] Braddock M, Chambers A, Wilson W, Esnouf MP, Adams SE, Kingsman AJ, Kingsman SM. HIV-1 TAT "activates" presynthesized RNA in the nucleus. Cell. 1989;58(2):269-79.
[96] Braddock M, Thorburn AM, Chambers A, Elliott GD, Anderson GJ, Kingsman AJ, Kingsman SM. A nuclear translational block imposed by the HIV-1 U3 region is relieved by the Tat-TAR interaction. Cell. 1990;62(6):1123-33.
[97] Braddock M, Thorburn AM, Kingsman AJ, Kingsman SM. Blocking of Tat-dependent HIV-1 RNA modification by an inhibitor of RNA polymerase II processivity. Nature. 1991;350(6317):439-41.
[98] Chin DJ, Selby MJ, Peterlin BM. Human immunodeficiency virus type 1 Tat does not transactivate mature trans-acting responsive region RNA species in the nucleus or cytoplasm of primate cells. J Virol. 1991;65(4):1758-64.
[99] Laspia MF, Rice AP, Mathews MB. HIV-1 Tat protein increases transcriptional initiation and stabilizes elongation. Cell. 1989;59(2):283-92.
[100] Cullen BR. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell. 1986;46(7):973-82.
[101] Greenblatt J, Nodwell JR, Mason SW. Transcriptional antitermination. Nature. 1993;364(6436):401-6.
[102] Gunnery S, Rice AP, Robertson HD, Mathews MB. Tat-responsive region RNA of human immunodeficiency virus 1 can prevent activation of the double-stranded-RNA-activated protein kinase. Proc Natl Acad Sci U S A. 1990;87(22):8687-91.
[103] Berkhout B, Gatignol A, Rabson AB, Jeang KT. TAR-independent activation of the HIV-1 LTR: evidence that tat requires specific regions of the promoter. Cell. 1990;62(4):757-67.
[104] Southgate C, Zapp ML, Green MR. Activation of transcription by HIV-1 Tat protein tethered to nascent RNA through another protein. Nature. 1990;345(6276):640-2.
[105] Selby MJ, Peterlin BM. Trans-activation by HIV-1 Tat via a heterologous RNA binding protein. Cell. 1990;62(4):769-76.
[106] Kamine J, Chinnadurai G. Synergistic activation of the human immunodeficiency virus type 1 promoter by the viral Tat protein and cellular transcription factor Sp1. J Virol. 1992;66(6):3932-6.
[107] Han XM, Laras A, Rounseville MP, Kumar A, Shank PR. Human immunodeficiency virus type 1 Tat-mediated trans activation correlates with the phosphorylation state of a cellular TAR RNA stem-binding factor. J Virol. 1992;66(7):4065-72.
[108] Wu F, Garcia J, Sigman D, Gaynor R. tat regulates binding of the human immunodeficiency virus trans-activating region RNA loop-binding protein TRP-185. Genes Dev. 1991;5(11):2128-40.
[109] Ratnasabapathy R, Sheldon M, Johal L, Hernandez N. The HIV-1 long terminal repeat contains an unusual element that induces the synthesis of short RNAs from various mRNA and snRNA promoters. Genes Dev. 1990;4(12A):2061-74.
[110] Han P, Brown R, Barsoum J. Transactivation of heterologous promoters by HIV-1 tat. Nucleic Acids Res. 1991;19(25):7225-9.
[111] Berkhout B, Jeang KT. Functional roles for the TATA promoter and enhancers in basal and Tat-induced expression of the human immunodeficiency virus type 1 long terminal repeat. J Virol. 1992;66(1):139-49.
[112] Olsen HS, Rosen CA. Contribution of the TATA motif to Tat-mediated transcriptional activation of human immunodeficiency virus gene expression. J Virol. 1992;66(9):5594-7.
[113] Bachelerie F, Alcami J, Arenzana-Seisdedos F, Virelizier JL. HIV enhancer activity perpetuated by NF-kappa B induction on infection of monocytes. Nature. 1991;350(6320):709-12.
[114] Sullenger BA, Gallardo HF, Ungers GE, Gilboa E. Overexpression of TAR sequences renders cells resistant to human immunodeficiency virus replication. Cell. 1990;63(3):601-8.
[115] Graham GJ, Maio JJ. RNA transcripts of the human immunodeficiency virus transactivation response element can inhibit action of the viral transactivator. Proc Natl Acad Sci U S A. 1990;87(15):5817-21.
[116] Pfeifer K, Bachmann M, Schröder HC, Weiler BE, Ugarkovic D, Okamoto T, Müller WE. Formation of a small ribonucleoprotein particle between Tat protein and trans-acting response element in human immunodeficiency virus-infected cells. J Biol Chem. 1991;266(22):14620-6.
[117] Desai K, Loewenstein PM, Green M. Isolation of a cellular protein that binds to the human immunodeficiency virus Tat protein and can potentiate transactivation of the viral promoter. Proc Natl Acad Sci U S A. 1991;88(20):8875-9.
[118] Nelbock P, Dillon PJ, Perkins A, Rosen CA. A cDNA for a protein that interacts with the human immunodeficiency virus Tat transactivator. Science. 1990;248(4963):1650-3.
[119] Shibuya H, Irie K, Ninomiya-Tsuji J, Goebl M, Taniguchi T, Matsumoto K. New human gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature. 1992;357(6380):700-2.
[120] Kim YS, Risser R. TAR-independent transactivation of the murine cytomegalovirus major immediate-early promoter by the Tat protein. J Virol. 1993;67(1):239-48.
[121] Taylor JP, Pomerantz R, Bagasra O, Chowdhury M, Rappaport J, Khalili K, Amini S. TAR-independent transactivation by Tat in cells derived from the CNS: a novel mechanism of HIV-1 gene regulation. EMBO J. 1992;11(9):3395-403.
[122] Remenick J, Radonovich MF, Brady JN. Human immunodeficiency virus Tat transactivation: induction of a tissue-specific enhancer in a nonpermissive cell line. J Virol. 1991;65(10):5641-6.
[123] Kato H, Sumimoto H, Pognonec P, Chen CH, Rosen CA, Roeder RG. HIV-1 Tat acts as a processivity factor in vitro in conjunction with cellular elongation factors. Genes Dev. 1992;6(4):655-66.
[124] Ensoli B, Barillari G, Salahuddin SZ, Gallo RC, Wong-Staal F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature. 1990;345(6270):84-6.
[125] Zauli G, Furlini G, Re MC, Milani D, Capitani S, La Placa M. Human immunodeficiency virus type 1 (HIV-1) tat-protein stimulates the production of interleukin-6 (IL-6) by peripheral blood monocytes. New Microbiol. 1993;16(2):115-20.
[126] Sastry KJ, Reddy HR, Pandita R, Totpal K, Aggarwal BB. HIV-1 tat gene induces tumor necrosis factor-beta (lymphotoxin) in a human B-lymphoblastoid cell line. J Biol Chem. 1990;265(33):20091-3.
[127] Zauli G, Davis BR, Re MC, Visani G, Furlini G, La Placa M. tat protein stimulates production of transforming growth factor-beta 1 by marrow macrophages: a potential mechanism for human immunodeficiency virus-1-induced hematopoietic suppression. Blood. 1992;80(12):3036-43.
[128] Howcroft TK, Strebel K, Martin MA, Singer DS. Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science. 1993;260(5112):1320-2.
[129] Mann DA, Frankel AD. Endocytosis and targeting of exogenous HIV-1 Tat protein. EMBO J. 1991;10(7):1733-9.
[130] Helland DE, Welles JL, Caputo A, Haseltine WA. Transcellular transactivation by the human immunodeficiency virus type 1 tat protein. J Virol. 1991;65(8):4547-9.
[131] Cullen BR. Does HIV-1 Tat induce a change in viral initiation rights? Cell. 1993;73(3):417-20.
[132] Nicholas J, Nevins JR. Distinct DNA targets for trans-activation by HTLV-1 tax and adenovirus E1A. Virology. 1991;182(1):156-67.
[133] Seigel LJ, Ratner L, Josephs SF, Derse D, Feinberg MB, Reyes GR, O'Brien SJ, Wong-Staal F. Transactivation induced by human T-lymphotropic virus type III (HTLV III) maps to a viral sequence encoding 58 amino acids and lacks tissue specificity. Virology. 1986;148(1):226-31.
[134] Drysdale CM, Pavlakis GN. Rapid activation and subsequent down-regulation of the human immunodeficiency virus type 1 promoter in the presence of Tat: possible mechanisms contributing to latency. J Virol. 1991;65(6):3044-51.
[135] Wagner S, Green MR. HTLV-I Tax protein stimulation of DNA binding of bZIP proteins by enhancing dimerization. Science. 1993;262(5132):395-9.