Biopolym. Cell. 1999; 15(5):383-389.
Структура та функції біополімерів
Спроба поєднати морфологічні ознаки та послідовності ядерної рибосомної ДНК (внутрішнього транскрибованого спейсера) в філогенетичних дослідженнях у роді Nicotiana
1Комарницький С. І.
  1. Інститут клітинної біології та генетичної інженерії НАН України
    вул. Академіка Заболотного, 148, Київ, Україна, 03680

Abstract

Досліджено родинні зв'язки 24 видів роду Nicotiana на основі первинної структури внутрішнього транскрибованого спейсера ядерної рибосомної ДНК згідно з методом «максимальної економії». Здійснено їхнє порівняння з даними повного морфологічного аналізу, морфології насіннєвих оболонок та поліпептидного складу рубіско цих видів. Зроблено висновок стосовно того, що недостатньо покладатися лише на морфологічні або молекулярні дані при реконструкції філогенії будь-якого таксону.

References

[1] Henning W. Phylogenetic Systematics, Urbana: Univ. of Illinois press1966 p. 435.
[2] Burbidge N.T. The australian species of Nicotiana L (Solanaceae). Aust. J. Bot, 1960; 8(3):342-395.
[3] Goodspeed T.H. The Genus Niconiana, Massachusetts: Waltham 1954 p. 536.
[4] Merxmuller J., Buttler K.P. Nicotiana in Africanischen Namiberi Pflanzengeographischen and Phylogenetischen Ratsel. Mitt. Bot. Munchen, 1975 12, pp. 91-104.
[5] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97.
[6] Narayan R.K.J. Nuclear DNA changes, genome differentiation and evolution in Nicotiana (Solanaceae. Plant Systematics and Evolution, 1987; 157(3-4): 161-180.
[7] Ingle J, Timmis JN, Sinclair J. The Relationship between Satellite Deoxyribonucleic Acid, Ribosomal Ribonucleic Acid Gene Redundancy, and Genome Size in Plants. Plant Physiol. 1975;55(3):496-501.
[8] Long EO, Dawid IB. Repeated genes in eukaryotes. Annu Rev Biochem. 1980;49:727-64.
[9] Baldwin BG. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. Mol Phylogenet Evol. 1992;1(1):3-16.
[10] Hsiao C, Chatterton NJ, Asay KH, Jensen KB. Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theor Appl Genet. 1995;90(3-4):389-98.
[11] Soltis D.E., Kuzoff R.K. Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae). Evolution, 1995; 49 (4):727-742.
[12] Suh Y., Thien L.V., Raeve H.E., Zimmer E.A. Molecular evolution and phylogenetic implications of internal transcribed spacer sequences of ribosomal DNA in Winteraceae. Amer. J. Bot, 1993; 80:1042-1055.
[13] Sun Y., Skinner D.Z., Liang G.H., Hulbert S.H. Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics,1994; 89 (1):26-32.
[14] Wojciechowski M.F., Sanderson M.J., Baldwin B.G., Donoghue M.J. Monophyly of aneuploid astragalus (Fabaceae): Evidence from nuclear ribosomal DNA internal transcribed spacer sequences. Amer. J. Bot, 1993 80:711-722.
[15] Arnheim, N. Concerted evolution of multigene families. Evolution of Genes and Proteins, Eds R. Koehn, M. Nei. Sinauer: Sanderland 1983; 38-61.
[16] Dover G. Molecular drive: a cohesive mode of species evolution. Nature. 1982;299(5879):111-7.
[17] Palmer J.D., Jensen R.K., Michaels H.J., Chase M.W., Manhart J.R. Chloroplast DNA variation and plant phylogeny. Annu. Mo. Bot. Gard, 1975; 1180-1206.
[18] Systma J.J., Smith J.F., Gottlieb L.D. Phylogenetics in Clarkia (Onagraceae): Restriction site mapping of chloroplast DNA. Syst. Biol, 1915 : 280-295.
[19] Chaplin J.F., Burk L.G. Plant Propagation, Nicotiana: procedures for experimental use. Technical bulletin 1586, US Department of Agriculture. New York 1979;. 28-32.
[20] Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321-5.
[21] White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications,San Diego: Acad, press 1990: 315-322.
[22] Higgins DG, Bleasby AJ, Fuchs R. CLUSTAL V: improved software for multiple sequence alignment. Comput Appl Biosci. 1992;8(2):189-91.
[23] Kluge A. G., Farris J. S. Quantitative phyletics and the evolution of anurans Systematic Zool. 1969; 18(1):1—32.
[24] Felsenstein J. PHYLIP—Phylogeny Inference Package, Version 3.5 1993.
[25] Felsenstein J. Confidence limits on phytogenies: An approach using bootstrap Evolution; 1985. 39(4):783—791.
[26] Sanderson M. J. Confidence limits on phylogenies: the boot­strap revised. Cladistics. 1989. 5: 113—129.
[27] Wu C. F. J. Jackknife, bootstrap and other resampling plans in regression analysis Ann. of Statistics. 1986. 14.:1261—1295.
[28] Jorgensen R. A., Cluster P. D. Models and tempos in the evolution of nuclear liposomal DNA: new characters for evolutionary studies and new markers for genetic and population studies Amer. Missuor. Bot. Gard. 1988. 75:1238—1247.
[29] Takaiwa F., Oono K., Sugiura M. Nucleotide sequence of the 17—25S spacer region from rice rDNA Plant. Mol. Biol. 1985. 4: 355—364.
[30] Bahadur B., Farooqui S. M. Seed and seed coat characters in australian Nicotiana II Solanaceae. Biology and systematics Ed. W. G. D'Arcy. New York: Columbia Univ. press, 1986; 114—137.
[31] Chen 1C, Johal S.t Wildman S. G. Role of chloroplast and nuclear DNA genes during evolution of fraction I protein Genetic and biogenesis of chloroplast and mitochondria. Amsterdam: Elsevier, 1976. 3—11.