Biopolym. Cell. 1986; 2(5):227-239.
Огляди
Теоретичне обґрунтування і експериментальне створення азотфіксаторів нового типу, здатних розвиватися і фіксувати азот атмосфери у небобових рослинах
1Кордюм В. А., 1Козировська Н. О., 1Гуньковська Н. В.
  1. Інститут молекулярної біології і генетики АН УСРС
    Київ, СРСР

Abstract

На основі аналізу літератури і власних експериментальних даних запропоновано новий напрямок у біологічній азотфіксації – створення азотфіксуючих похідних бактерій, здатних розвиватися у небобових рослинах.

References

[1] Stewart WDP. Nitrogen fixation - its current relevance and future potential. Isr J Bot. 1983; 32(1-4):5-44.
[2] Bayev AA, Zlotnikov KM. Biological nitrogen fixation and genetic engineers thorium. Biotekhnologiya. Moscow, Nauka, 1984; 217-223.
[3] Paul EA. Contribution of nitrogen fixation to ecosystem functioning and nitrogen flixes on a globas basis. Ecol Bull. 1978; 26:282-93.
[4] Kordyum VA. Biological nitrogen fixation. Problems and prospects. Molekulyarnaya biologiya. 1982; Is. 30:45-57.
[5] Ela SW, Anderson MA, Brill WJ. Screening and selection of maize to enhance associative bacterial nitrogen fixation. Plant Physiol. 1982;70(5):1564-7.
[6] Iyama S, Sano Y, Fujii T. Diallel analysis of nitrogen fixation in the rhizosphere of rice. Plant Sci Lett. 1983; 30(2):129-135.
[7] Balandreau J. Microbiology of the association. Can J Microbiol. 1983; 29(8):851-9.
[8] Vose PB. Developments in nonlegume N2-fixing systems. Can J Microbiol. 1983. 29(8):837-850.
[9] Ishac YZ, El-Borollosy MA, Refaat AA. Nitrogen fixing microorganisms in the phyllosphere of some crop plants in Egypt. Soil Biol, and Conserv. Biosphere. 1984; 2:541-555
[10] Schroth MN, Hancock JG. Disease-suppressive soil and root-colonizing bacteria. Science. 1982;216(4553):1376-81.
[11] Klingmuller W. Gentic engineering for practical application. Naturwissenschaften. 1979;66(4):182-9.
[12] Kleeberger A, Klingmilller W. Plasmid-mediated transfer of nitrogen-fixing capability to bacteria from the rhizosphere of grasses. Mol Gen Genet. 1980; 180(3):621-7.
[13] Chen JM, Ye ZH. Transfer and expression of Klebsiella nif genes in Alcaligenes faecalis, a nitrogen-fixing bacterium associated with rice root. Plasmid. 1983;10(3):290-2.
[14] Patriquin D. G., Dobereiner J., Lain D. K. Sites and processes of association between diazotrophs and grasses. Can. J. Microbiol. 1983. 29, N 8:900-915.
[15] Kordyum VA, Kozyrovskaya NA, Gvozdyak RI, Muras VA. Transfer of plasmid RP41 markers into Xanthomonas beticola. Dopovidi Akad Nauk Ukr RSR. Ser B. 1980; (5):78-81.
[16] Hirsch AM, Wilson KJ, Jones JD, Bang M, Walker VV, Ausubel FM. Rhizobium meliloti nodulation genes allow Agrobacterium tumefaciens and Escherichia coli to form pseudonodules on alfalfa. J Bacteriol. 1984;158(3):1133-43.
[17] Morrison NA, Hau CY, Trinick MJ, Shine J, Rolfe BG. Heat curing of a sym plasmid in a fast-growing Rhizobium sp. that is able to nodulate legumes and the nonlegume Parasponia sp. J Bacteriol. 1983;153(1):527-31.
[18] Silver WS, Centifanto YM, Nicolas DJD. Nitrogen fixation by the leaf-nodule endophyte of Psychotria bacteriophyta. Nature. 1963; 199(4891):396-397.
[19] Taboada J, Herrera T. Effecto de aminoacidos sorbe la fijacion de nitrogeno por Agrobacterium azotophilum. An Inst biol. Univ. nac. auton. Mex. Ser.-Biol. exp. 1972; 43(1):35-42.
[20] Papen H, Werner D. N2-fixation in Erwinia herbicola. Arch Microbiol. 1979; 120(1):25-30.
[21] Abd El Rehim MA, Ghaffar ASA, Fawaz K, Gobtial WN. Serological and immunoelectrophoretical relationships between Rhizobium and Agrobacterium strains. Egypt J Soil Sci. 1975; (Spec issue):471-6.
[22] Perombelon M. C. M., Boucher C. Developing of mating system in Erwinia carotovora. In: Proc. 4th Int. Conf. Plant Pathog. Bact. Angers, 1978; 1:47-52.
[23] Boistard P, Boucher C. P-I group plasmids as tool for genetic study of phytopathogenic bacteria. In: Proc. 4th Int. Conf. Plant Pathog. Bact. Angers, 1978; 1:17-30.
[24] Zaenen I, Van Larebeke N, Van Montagu M, Schell J. Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. J Mol Biol. 1974;86(1):109-27.
[25] Chilton MD, Drummond MH, Merio DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW. Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell. 1977;11(2):263-71.
[26] Chatterjee AK, Starr MP. Transfer among Erwinia spp. and other enterobacteria of antibiotic resistance carried on R factors. J Bacteriol. 1972;112(1):576-84.
[27] Coplin DL, Rowan RC. Conjugative plasmids in Erwinia stewartii. In: Proc. 4th Int. Conf. Plant Pathog. Bact. Angers, 1978; 1:67-73.
[28] Sparks RB, Lacy GH. Purification and characterization of cryptic plasmids pLSl and pLS2 from Erwinia chrysanthemi. Phytopathology. 1980; 70(5):369-72.
[29] Neborachko LN, Gvozdyak RP, Kordyum VA. Heterologous expression plasmids in Erwinia carotovora. Dokl Akad Nauk SSSR. 1982; 264(1. 6):282-285.
[30] Haas D, Holloway BW. R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol Gen Genet. 1976;144(3):243-51.
[31] Hendrick CA, Haskins WP, Vidaver AK. Conjugative Plasmid in Corynebacterium flaccumfaciens subsp. oortii That Confers Resistance to Arsenite, Arsenate, and Antimony(III). Appl Environ Microbiol. 1984;48(1):56-60.
[32] Gonzales CF, Layher SK, Vidaver AK, Olsen RH. Transfer, mapping and cloning of Pseudomonas syringae pv. syringae plasmid pCG131 and assessement of its role in virulence. Phytopathology. 1984; 74(10):1245-50.
[33] Barras F, Boyer MH, Chambost JP, Chippaux M. Construction of a genomic library of Erwinia chrysanthemi and molecular cloning of cellulase gene. Mol Gen Genet. 1984; 197(3):513-515.
[34] Keen NT, Dahlbeck D, Staskawicz B, Belser W. Molecular cloning of pectate lyase genes from Erwinia chrysanthemi and their expression in Escherichia coli. J Bacteriol. 1984;159(3):825-31.
[35] Collmer A, Schoedel C, Roeder DL, Ried JL, Rissler JF. Molecular cloning in Escherichia coli of Erwinia chrysanthemi genes encoding multiple forms of pectate lyase. J Bacteriol. 1985;161(3):913-20.
[36] Gijsegem F, Toussaint A, Schoonejans E. In vivo cloning of the pectate lyase and cellulase genes of Erwinia chrysanthemi. EMBO J. 1985;4(3):787-92.
[37] Kotoujansky A, Diolez A, Boccara M, Bertheau Y, Andro T, Coleno A. Molecular cloning of Erwinia chrysanthemi pectinase and cellulase structural genes. EMBO J. 1985;4(3):781-5.
[38] Lei SP, Lin HC, Heffernan L, Wilcox G. Cloning of the pectate lyase genes from Erwinia carotovora and their expression in Escherichia coli. Gene. 1985;35(1-2):63-70.
[39] Zink RT, Chatterjee AK. Cloning and expression in Escherichia coli of pectinase genes of Erwinia carotovora subsp. carotovora. Appl Environ Microbiol. 1985;49(3):714-7.
[40] Reverchon S, Hugouvieux-Cotte-Pattat N, Robert-Baudouy J. Cloning of genes encoding pectolytic enzymes from a genomic library of the phytopathogenic bacterium, Erwinia chrysanthemi. Gene. 1985;35(1-2):121-30.
[41] Daniels MJ, Barber CE, Turner PC, Sawczyc MK, Byrde RJ, Fielding AH. Cloning of genes involved in pathogenicity of Xanthomonas campestris pv. campestris using the broad host range cosmid pLAFR1. EMBO J. 1984;3(13):3323-8.
[42] Turner P, Barber C, Daniels M. Evidence for clastered pathogenecity genes in Xanthomotias campestris pv. campestris. Mol Gen Genet. 1985; 199(2):338-44.
[43] Ehrenshaft M, Mills D. Construction of a cosmid clone library of Pseudomonas syringae pv. phaseolicola and isolation of genes by functional complementation. Appl Environ Microbiol. 1985;50(1):169-71.
[44] Lobanok TE, Pesniakevich AG, Fomichev IuK. Acceptance and transfer of plasmid Rts1 by bacteria of the genus Erwinia. Genetika. 1979;15(10):1739-45.
[45] Mingtan L, Panopoulos NJ, Shaffer S. Transmission of R plasmids among Xanthomonas spp. and other plant pathogenic bacteria. Phytopathology. 1977; 67(8):1044-1050.
[46] Cannon FC, Dixon RA, Postgate JR. Derivation and properties of F-prime factors in Escherichia coli carrying nitrogen fixation genes from Klebsiella pneumoniae. J Gen Microbiol. 1976;93(1):111-25.
[47] Postgate JR, Krishnapillai V. Expression of Klebsiella nif and his genes in Salmonella typhimurium. J Gen Microbiol. 1977;98(2):379-85.
[48] Dixon R, Cannon F, Kondorosi A. Construction of a P plasmid carrying nitrogen fixation genes from Klebsiella pneumoniae. Nature. 1976;260(5548):268-71.
[49] Kozyrovskaya NA, Kordyum VA. Influence on the properties of the plasmid pRDl phytopathogenic bacteria. Mol Genet Mikrobiol Virusol. 1983;(5):35-38.
[50] Kozyrovskaya NA, Gvozdyak RI, Muras VA, Kordyum VA. Changes in properties of phytopathogenic bacteria effected by plasmid pRD1. Arch Microbiol. 1984;137(4):338-43.
[51] Kordyum VA, Kozyrovskaya NA. Features of gene expression of nitrogen fixation (nif) in exconjugants Xanthomonas beticola. Recombinant plasmids: Proc. of reports all-union conf. Pushchino, 1982; P. 67
[52] Puhler A, Burkardt HJ, Cannon FC, Wohlleben W. Spontaneous degradation of pRD1 DNA into unique size classes is recA dependent. Mol Gen Genet. 1979;171(1):1-6.
[53] Kordium VA, Kozyrovskaia NA, Gvozdiak RI, Khodos SF. Confering the nitrogen fixation ability to bacteria Erwinia aroideae. Dokl Akad Nauk SSSR. 1983; 271(1):206-10.
[54] Farrand SK, Kado CI, Ireland CR. Suppression of tumorigenicity by the IncW R plasmid pSa in Agrobacterium tumefaciens. Mol Gen Genet. 1981. 181(1):44-51.