Biopolym. Cell. 2009; 25(6):431-444.
Огляди
Молекулярно-імпринтовані полімери як штучні аналоги біологічних рецепторів. 2. Практичне за стосування у новітній біотехнології
1Сергеєва Т. А.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Огляд присвячено аналізу робіт у галузі отримання штучних аналогів біологічних рецепторів та їхньому практичному застосуванню в біотехнології. Основну увагу в цьому сенсі приділено таким галузям новітньої біотехнології, як сенсрона технологія, твердофазова екстракція, псевдоімуноаналіз, а також хроматогафія
Keywords: молекулярний імпринтинг, молекулярно-імпринтовані полімери, полімери-биоміметики

References

[1] Sergeyeva T. A. Molecularly imprinted polymers as synthetic mimicks of bioreceptors. 1. General principles of molecular imprinting Biopolym. Cell 2009 25, N 4:253–265.
[2] Sanbe H., Haginaka J. Restricted access media-molecularly imprinted polymer for propranolol and its application to direct injection analysis of beta-blockers in biological fluids Analyst 2003 128, N 6:593–597.
[3] Lai J.-P., CaoX. F., Wang X. L., He X. W. Chromatographic characterization of molecularly imprinted microspheres for the separation and determination of trimethoprim in aqueous buffers Anal. Bioanal. Chem 2002 372, N 2:391– 396.
[4] Allender C. J., Brain K. R., Ballatore C., Cahard D., Siddiqui A., McGuigan C. Separation of individual antiviral nucleotide prodrugs from synthetic mixtures using cross-reactivity of a molecularly imprinted stationary phase Anal. Chim. Acta 2001 435, N 1:107–113.
[5] Yan L. S., Wang Z. H., Luo G., Wang Y. M. Determination of caffeine by micro high performance liquid chromatography with a molecularly imprinted capillary monolithic column. Chin. J. Anal. Chem. 2004; 32(2):148–152.
[6] Gill R. S., Marquez M., Larsen G. Molecular imprinting of a cellulose/silica composite with caffeine and its characterization Microporous and Mesoporous Materials 2005 85, N 1–2:129–135.
[7] Hwang C. C., Lee W. C. Chromatographic resolution of the enantiomers of phenylpropanolamine by using molecularly imprinted polymer as the stationary phase J. Chromatogr. B 2001 765, N 1:45–53.
[8] Lai J. P., Lu X. Y., Lu C. Y., Ju H. F., He X. W. Preparation and evaluation of molecularly imprinted polymeric microspheres by aqueous suspension polymerization for use as a highperformance liquid chromatography stationary phase Anal. Chim. Acta 2001 442, N 1:105–111.
[9] Piletska E. V., Romero-Guerra M., Guerreiro A. R., Karim K., Turner A. P. F., Piletsky S. A. Adaptation of the molecular imprinted polymers towards polar environment Anal. Chim. Acta 2005 542, N 1:47–51.
[10] Kim H., Kaczmarski K., Guiochon G. Intraparticle mass transfer kinetics on molecularly imprinted polymers of structural analogues of a template Chem. Eng. Sci 2001 61, N 4:1122–1137.
[11] Simon R., Houck S., Spivak D. A. Comparison of particle size and flow rate optimization for chromatography using onemonomer molecularly imprinted polymers versus traditional non-covalent molecularly imprinted polymers Anal. Chim. Acta 2005 542, N 1:104–110.
[12] Sun R., Yu H., Luo H., Shen Z. Construction and application of a stoichiometric displacement model for retention in chiral recognition of molecular imprinting J. Chromatogr. A 2004 1055, N 1–2:1–9.
[13] Lu Y., Li C., Liu X., Huang W. Molecular recognition through the exact placement of functional groups on non-covalent molecularly imprinted polymers J. Chromatogr. A 2002 950, N 1–2:89–97.
[14] Striegler S., Tewes E. Investigation of sugar-binding sites in ternary ligand-copper(II)-carbohydrate complexes Eur. J. Inorg. Chem 2002 N 2:487–495.
[15] Striegler S. Carbohydrate recognition in cross-linked sugartemplated poly(acrylates) Macromolecules 2003 36, N 4:1310–1317.
[16] Wulff G., Schauhoff S. Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting. Selectivity dependence on the arrangement of functional groups versus spatial requirements J. Org. Chem 2001 56, N1:395–400.
[17] Baggiani C., Giraudi G., Giovannoli C., Trotta F., Vanni A. Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2,4,5-trichlorophenoxyacetic acid J. Chromatogr. A 2000 883, N 1–2:119–126.
[18] Tamayo F. G., Martin-Esteban A. Selective high performance liquid chromatography imprinted-stationary phases for the screening of phenylurea herbicides in vegetable samples J. Chromatogr. A 2005 1098, N 1–2:116–122.
[19] Prasad B. B., Banerjee S. Determination of diquat herbicide by selective enrichment by column chromatography on imprinted polymer immobilised on silica gel Chromatographia 2002 55, N 3–4:171–176.
[20] Baggiani C., Anfossi L., Baravalle P., Giovannoli C., Tozzi C. Selectivity features of molecularly imprinted polymers recognising the carbamate group Anal. Chim. Acta 2005 531, N 2:199–207.
[21] Bruggemann O., Visnjevski A., Burch R., Patel P. Selective extraction of antioxidants with molecularly imprinted polymers Anal. Chim. Acta 2004 504, N 1:81–88.
[22] Andersson L. I., Muller R., Mosbach K. Molecular imprinting of the endogenous neuropeptide Leu-5 enkephalin and some derivatives thereof Macromol. Res. Communs 1996 17, N 1:65–71.
[23] Yano K., Nakagiri T., Takeuchi T., Matsui J., Ikebukuro K., Karube I. Stereoselective recognition of dipeptide derivatives in molecularly imprinted polymers which incorporate an L-valine derivative as a novel functional monomer Anal. Chim. Acta 1997 357, N 1–2:91–98.
[24] Rachkov A., Hu M., Bulgarevich E., Matsumoto T., Minoura N. Molecularly imprinted polymers prepared in aqueous solution selective for [Sar1, Ala8]angiotensin II Anal. Chim. Acta 2004 504, N 1:191–197.
[25] Janiak D. S., Kofinas P. Molecular imprinting of peptides and proteins in aqueous media Anal. Bioanal. Chem 2007 389, N 2:399–404.
[26] Janotta M., Weiss R., Mizaikoff B., Bruggemann O., Ye L., Mosbach K. Molecularly imprinted polymers for nitrophenols – An advanced separation material for environmental analysis Int. J. Environ. Anal. Chem 2001 80, N 2 P. 75–86.
[27] Moller K., Nilsson U., Crescenzi C. Synthesis and evaluation of molecularly imprinted polymers for extracting hydrolysis products of organophosphate flame retardants J. Chromatogr. A 2001 938, N 1–2:121–130.
[28] Ansell R. J., Mosbach K. Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent J. Chromatogr. A 1997 787, N 1–2:55–66.
[29] Flores A., Cunliff D., Whitcombe M. J., Vulfson E. N. Imprinted polymers prepared by aqueous suspension polymerization J. Appl. Polym. Sci 2000 77, N 8:1841–1850.
[30] Zhang L. Y., Cheng G. X., Fu C., Liu X. H. Tyrosine imprinted polymer beads with different functional monomers via seed swelling and suspension polymerization Polym. Eng. Sci 2003 43, N 3:965–974.
[31] Li Y. C., Fu Q. Q., Zhang Q. Q., He L. C. Preparation and evaluation of uniform-size (-)-ephedrine-imprinted polymeric microspheres by multi-step swelling and suspension polymerisation Anal. Sci 2006 22, N 10:1355–1360.
[32] Haginaka J., Tabo H., Ichitani M., Takihara T., Sugimoto A. Sambe H. Uniformly-sized, molecularly imprinted polymers for (-)-epigallocatechin gallate, -epicatechin gallate and gallocatechin gallate by multi-step swelling and polymerization method J. Chromatogr. A 2007 1156, N 1–2:45–50.
[33] Liu X. J., Chen Z. Y., Zhao R., Shangguan D., Liu G. Q., Chen Y. Uniform-sized molecularly imprinted polymer for metsulfuronmethyl by one-step swelling and polymerization method Talanta 2007 71, N 3:1205–1210.
[34] Sambe H., Hoshina K., Haginaka J. Molecularly imprinted polymers for triazine herbicides prepared by multi-step swelling and polymerization method – Their application to the determination of methylthiotriazine herbicides in river water J. Chromatogr. A 2007 1152, N 1–2:130–137.
[35] Tamayo F. G., Titirici M. M., Martin-Esteban A., Sellergren B. Synthesis and evaluation of new propazine-imprinted polymer formats for use as stationary phases in liquid chromatography Anal. Chim. Acta 2005 542, N 1 P. 38–46.
[36] Kim H. J., Guiochon G. Comparison of the thermodynamic properties of particulate and monolithic columns of molecularly imprinted copolymers Anal. Chem 2005 77, N 1 P. 93–102.
[37] Jin H. L., Row K. H. Special selectivity of molecularly imprinted monolithic stationary phase J. Liq. Chromatogr. Relat. Technol 2005 28, N 20:3147–3155.
[38] Sun H. W., Qiao F. X., Liu G. Y. Characteristic of theophylline imprinted monolithic column and its application for determination of xanthine derivatives caffeine and theophylline in green tea J. Chromatogr. A 2006 1134, N 1–2 P. 194–200.
[39] Haginaka J., Futagami A. Addition of N-carbobenzyloxyltryptophan as a co-template molecule to molecularly imprinted polymer monoliths for (+)-nilvadipine J. Chromatogr. A 2008 1185, N 2:258–262.
[40] Lui H., Zhuang X., Turson M., Zhang M., Dong X. Enrofloxacinimprinted monolithic columns synthesized using reversible addition-fragmentation chain transfer polymerization J. Separ. Sci 2008 31, N 10:1694–1701.
[41] Yan H., Row K. H. Novel molecularly imprinted monolithic column for selective on-line extraction of ciprofloxacin from human urine Biomed. Chromatogr 2008 22, N 5 P. 487–493.
[42] Seebach A., Seidel-Morgenstern A. Enantioseparation on molecularly imprinted monoliths – Preparation and adsorption isotherms Anal. Chim. Acta 2007 591, N 1:57–62.
[43] Svec F. Less common applications of monoliths: Preconcentration and solid-phase extraction J. Chromatogr. B 2006 841, N 1–2:52–64.
[44] Masque N., Marce R. M., Borrul F. Molecularly imprinted polymers: new tailor-made materials for selective solid-phase extraction Trends Anal. Chem 2001 20, N 9 P. 477–486.
[45] Owens P. K., Karlsson L., Lutz E. S. M., Andersson L. I. Molecular imprinting for bioand pharmaceutical analysis Trends Anal. Chem 1999 18, N 3:146–154.
[46] Ferrer I., Barcello D. Validation of new solid-phase extraction materials for the selective enrichment of organic contaminants from environmental samples Trends Anal. Chem 1999 18, N 3:180–192.
[47] Poole C. F. New trends in solid-phase extraction Trends Anal. Chem 2003 22, N 6:362–373.
[48] Sellergren B. Direct drug determination by selective sample enrichment on an imprinted polymer Anal. Chem 1994 66, N 9:1578–1582.
[49] Suedee R., Seechamnanturakit V., Canyuk B., Ovatiarnporn C., Martin G. P. Temperature sensitive dopamine-imprinted (N,N'-methylene-bis-acrylamide cross-linked) polymer and its potential application to the selective extraction of adrenergic drugs from urine J. Chromatogr. A 2006 1114, N 2:239–249.
[50] Martin P. D., Jones G. R., Stringer F., Willson I. D. Comparison of normal and reversed-phase solid-phase extraction methods for extraction of beta-blockers from plasma using molecularly imprinted polymers Analyst 2003 128, N 4:345–350.
[51] Sambe H., Hoshina K., Hosoya K., Haginaka J. Direct injection analysis of bisphenol A in serum by combination of isotope imprinting with liquid chromatography-mass-spectrometry Analyst 2005 130, N 1:38–40.
[52] Mullet W., Dirie M., Lai E. P. C., Guo H., He X. A 2-aminopyridine molecularly imprinted polymer surrogate microcolumn for selective solid-phase extraction and determination of 4-aminopyridine Anal. Chim. Acta 2000 414, N 1–2:123–131.
[53] Crescenzi C., Bayoudth S., Cormack P. A. G., Klein T., Ensing K. Determination of clenbuterol in bovine liver by combining matrix solid-phase dispersion and molecularly imprinted solid-phase extraction followed by liquid chromatography/ electrospray ion trap multiple stage mass spectrometry Anal. Chem 2001 73, N 10:2171–2177.
[54] Caro E., Marce R. M., Cormack P. A. G., Sherrington D. C., Borrol F. A new molecularly imprinted polymer for the selective extraction of naproxen from urine samples by solidphase extraction J. Chromatogr. B 2004 5813, N 1–2 P. 137–143.
[55] Abdel-Rehim M., Andersson L. I., Altun Z., Blomberg L. G. Microextraction in packed syringe online with liquid chromatography- tandem mass spectrometry: molecularly imprinted polymer as packing material for MSPE in selective extraction of ropivacaine from plasma J. Liq. Chromatogr 2006 29:1725–1736.
[56] Cobb Z., Sellergren B., Andersson L. I. Water-compatible molecularly imprinted polymers for efficient direct injection on-line solid-phase extraction of ropivacaine and bupivacaine from human plasma Analyst 2007 132, N 12 P. 1262–1271.
[57] Cacho C., Turiel E., Martin-Esteban A., Perez-Conde C., Camara C. Clean-up of triazines in vegetable extracts by molecularly- imprinted solid-phase extraction using a propazineimprinted polymer Anal. Bioanal. Chem 2003 376, N 4 P. 491–496.
[58] Guzman-Vazquez de Prada A., Ruiz-Martinez P., Reviejo A. J., Pingarron J. M. Solid-phase molecularly imprinted on-line preconcentration and voltammetric determination of sulfamethazine in milk Anal. Chim. Acta 2005 539, N 1–2 P. 125–132.
[59] Piletsky S., Piletska E., Karim K., Foster G., Legge C., Turner A. Custom synthesis of molecular imprinted polymers for biotechnological application: Preparation of a polymer selective for tylosin Anal. Chim. Acta 2004 504, N 1:123– 130.
[60] Puoci F., Carreffa C., Iemma F., Muzzalupo R., Spizzirri U. G., Picci N. Molecularly imprinted solid-phase extraction for detection of sudan I in food matrices Food Chem 2005 93, N 2:349–353.
[61] Farrington K., Magner E., Regan F. Predicting the performance of molecularly imprinted polymers: selective extraction of caffeine by molecularly imprinted solid-phase extraction // Anal. Chim. Acta 2006 566, N 1:60–68.
[62] Liu Q., Zhou Y. X., Meng Z. H., Wang Q. Q., Xu X. Y., Liu Y. T. Determination of nerve agent degradation products in rice by molecular imprinting polymer solid-phase extraction and capillary electrophoresis. Clin. J. Anal. Chem. 2001; 29(4):387–390.
[63] Molinelli A., Weiss R., Mizaikoff B. Advanced solid-phase extraction using molecularly-imprinted polymers for the determination of quercetin in red wine J. Agric. Food. Chem 2002 50, N 7:1804–1808.
[64] Lai J. P., Niessner R., Knopp D. Benzo[a]pyrene imprinted polymers: synthesis, characterization and SPE application in water and coffee samples Anal. Chim. Acta 2004 522, N 2:137–144.
[65] Zhou S. N., Lai E. P. C., Miller J. D. Analysis of wheat extracts for ochratoxin A by molecularly imprinted solid-phase extraction and pulsed elution Anal. Bioanal. Chem 2004 378, N 8:1903–1906.
[66] Turner N. W., Piletska E. V., Karim K., Whitcombe M., Malecha M., Magan N., Baggiani C., Piletsky S. A. Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A Biosensors and Bioelectronics 2004 20, N 6:1060–1067.
[67] Zhu X. L., Yang J., Su Q. D., Cai J. B., Gao Y. Selective solidphase extraction using molecularly imprinted polymer for the analysis of polar organophosphorus pesticides in water and soil samples J. Chromatogr. A 2005 1092, N 2:161–169.
[68] Gallego-Gallegos M., Liva M., Olivas R. M., Camara C. Focused ultrasound and molecularly imprinted polymers: a new approach to organotin analysis in environmental samples J. Chromatogr. A 2006 1114, N 1:82–88.
[69] Tamayo F. G., Casillas J. L., Martin-Esteban A. Clean-up of phenylurea herbicides in plant sample extracts using molecularly imprinted polymers Anal. Bioanal. Chem 2005 381, N 6:1234–1240.
[70] Martin-Esteban A., Turiel E., Stevenson D. Effect of template size on the selectivity of molecularly imprinted polymers for phenylurea herbicides Chromatographia 2001 53 (Special issue):S434–437.
[71] Mena M. L., Martinez-Ruiz P., Reviejo A. J., Pingarron J. M. Molecularly imprinted polymers for on-line preconcentration by solid-phase extraction of primicarb in water samples. Anal. Chim. Acta 2002 451, N 2:297–304.
[72] Zhu O. Z., deGelmann P., Niessner R., Knopp D. Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer Environ. Sci. Technol 2002 36, N 24:5411–5420.
[73] Tamayo F. G., Casillas J. L., Martin-Esteban A. Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerization and its application to the clean-up of fenuron in plant samples Anal. Chim. Acta 2003 482, N 2:165–173.
[74] Baggiani C., Giovannoli C., Anfossi L., Tozzi C. Molecularly imprinted solid-phase extraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples J. Chromatogr. A 2001 938, N 1–2:35–44.
[75] Caro E., Marce R. M., Cormack P. A. G., Sherrington D. C., Borrul F. Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water. J. Chromatogr. A 2004; 1047(2):175–180.
[76] Say R., Ersoz A., Turk H., Denizli A. Selective separation and pre-concentration of cyanide by a column packed with cyanide-imprinted polymeric microbeads Sep. Purif. Technol 2004 40, N 1:9–14.
[77] Chianella I., Piletsky S. A., Tothill I. E., Chen B., Turner A. P. MIP-based solid-phase extraction cartridges combined with MIP-based sensors for the determination of microcystin-LR Biosensors and Bioelectronics 2003 18, N 2:119–127.
[78] Perez-Moral N., Mayes A. G. Comparative study of imprinted polymer particles prepared by different polymerisation methods Anal. Chim. Acta 2004 504, N 1:15–21.
[79] Turiel E., Tadeo J. L., Cormack P. A. G., Martin-Esteban A. HPLC imprinted-stationary phase prepared by precipitation polymerisation for the determination of thiabendazole in fruit Analyst 2005 130, N 12:1601–1608.
[80] Perez-Moral N., Mayes A. G. Direct rapid synthesis of MIP beads in SPE cartridges Biosensors and Bioelectronics 2006 21, N 9:1798–1803.
[81] Sanbe H., Hoshina K., Haginaka J. Direct injection analysis of bisphenol A in serum by combination of isotope imprinting with liquid chromatography-mass spectrometry Analyst 2005 130, N 1:38–46.
[82] Kubo T., Nomachi M., Nemoto K., Sano T., Hosoya K., Tanaka N., Kaya K. Chromatographic separation for domoic acid using a fragment imprinted polymer Anal. Chim. Acta 2006 577, N 1:1–7.
[83] Sanbe H., Haginaka J. Restricted access media-molecularly imprinted polymer for propranolol and its application to direct injection analysis of ?-blockers in biological fluids Analyst 2003 128, N 6:593–598.
[84] Watabe Y., Kondo T., Morita M., Tanaka N., Haginaka J., Hosoya K. Determination of bisphenol A in environmental water at ultra-low level by high performance liquid chromatography with an effective on-line pre-treatment device J. Chromatogr. A 2004 1032, N 1–2:9–45.
[85] Kubo T., Hosoya K., Watabe Y., Ikegami T., Tanaka N., Sano T., Kaya K. On-column concentration of bisphenol A with one-step removal of humic acids in water J. Chromatogr. A 2003 987, N 1–2:389–394.
[86] Ou J., Kong L., Pan C., Su X., Lei X., Zou H. Determination of dl-tetrahydropalmatine in Corydalis yanhusuo by l-tetrahydropalmatine imprinted monolithic column coupling with reversed-phase high performance liquid chromatography J. Chromatogr. A 2006 117, N 2:163–169.
[87] Xie J., Zhu L., Xu X. Affinitive separation and on-line identification of antitumor components from Peganum nigellastrum by coupling a chromatographic column of target analogue imprinted polymer with mass spectrometry Anal. Chem 2002 74, N 10:2352–2360.
[88] Haginaka J., Sanbe H. Uniform-sized molecularly imprinted polymers for 2-arylpropionic acid derivatives selectively modified with hydrophilic external layer and their applications to direct serum injection analysis Anal. Chem 2000 72, N 21:5206–5210.
[89] Hu S., Wang S. W., He X. W. An amobarbital molecularly imprinted microsphere for selective solid-phase extraction of phenobarbital from human urine and medicines and their determination by high-performance liquid chromatography Analyst 2003 128, N 12:1485–1489.
[90] Theodoridis G., Kantifes A., Manesiotis P., Raikos N., Tsoukali- Papandopoulou H. Preparation of a molecularly-imprinted polymer for the solid-phase extraction of scopolamine with hyoscyamine as a dummy template molecule J. Chromatogr. A 2003 987, N 1–2:103–109.
[91] Andersson L. I., Paprica A., Arvidsson T. A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting Chromatographia 1997 46, N 1–2:57–62.
[92] Wang J. C., Guo R. B., Chen J. P., Zhang Q., Liang X. M. Phenylurea herbicides-selective polymer prepared by molecular imprinting using N-(4-isopropylphenyl)-N'-butyleneurea as dummy template Anal. Chim. Acta 2005 540, N 1–2 P. 307–315.
[93] Matsui J., Fujiwara K., Takeuchi T. Atrazine-selective polymers prepared by molecular imprinting of trialkylmelamines as dummy template species of atrazine Anal. Chem 2000 72, N 8:1810–1813.
[94] Urraca J. L., Marazuela M. D., Merino E. R., Orellana G., Moreno-Bondi M. C. Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis J. Chromatogr. A 2006 1116, N 1–2:127–134.
[95] Jodlbauer J., Maier N. M., Lindner W. Towards ochratoxin A selective molecularly imprinted polymers for solid-phase extraction J. Chromatogr. A 2002 945, N 1:45–63.
[96] Chianella I., Karim K., Piletska E. V., Preston C., Piletsky S. A. Computational design and synthesis of molecularly imprinted polymers with high binding capacity for pharmaceutical applications-model case: adsorbent for abacavir Anal. Chim. Acta 2006 559, N 1:73–78.
[97] Koster M. E. H., Crescenzi C., Hoedt W. D., Ensing K., de Jong G. J. Fibers coated with molecularly imprinted polymers for solid-phase microextraction Anal. Chem 2001 73, N 13:3140–3145.
[98] Hu X., Hu Y., Li G. Development of novel molecularly imprinted solid-phase microextraction fiber and its application for the determination of triazines in complicated samples coupled with high-performance liquid chromatography J. Chromatogr. A 2007 1147, N 1:1–9.
[99] Yu J. C. C., Krushkova S., Lai E. P. C., Dabek-Zlotorzynska E. Molecularly-imprinted polypyrrole-modified stainless steel frits for selective solid phase preconcentration of ochratoxin A Anal. Bioanal. Chem 2005 382, N 7:1534– 1540.
[100] Xie S., Svec F., Frechet J. Porous polymer monoliths: preparation of sorbent materials with high-surface areas and controlled surface chemistry for high-throughput, online, solid-phase extraction of polar organic compounds Chem. Mater 1998 10, N 12:4072–4078.
[101] Tan A., Benetton S., Henion J. Chip-based solid-phase extraction pretreatment for direct electrospray mass spectrometry analysis using an array of monolithic columns in a polymeric substrate Anal. Chem 2003 75, N 20:5504– 5511.
[102] Ou J., Hu L., Hu L., Li X., Zou H. Determination of phenolic compounds in river water with on-line coupling bisphenol A imprinted monolithic precolumn with high performance liquid chromatography Talanta 2006 69, N 4:1001–1006.
[103] Zhang M., Xie J., Zhou Q., Chen G., Liu Z. On-line solidphase extraction of ceramides from yeast with ceramide III imprinted monolith J. Chromatogr. A 2003 984, N 2 P. 173–183.
[104] Courtois J., Fischer G., Sellergren B., Irgum K. Molecularly imprinted polymers grafted to flow through poly(trimethylolpropane trimethacrylate) monoliths for capillary-based solidphase extraction J. Chromatogr. A 2006 1109, N 1 P. 92–99.
[105] Pat. of Ukraine UA82805C2. Polymeric membrane for selective adsorbtion of herbicides (variants). T. A. Sergeyeva, O. O. Brovko, V. F. Matyushov, L. A. Goncharova, L. M. Sergeyeva, L. V. Stepanenko, G. V. El'ska Bull. N 9. 12.05.2008.
[106] Eur. pat. EP 1 521 800. Porous molecularly-imprinted polymer membranes. S. A. Piletsky, O. V. Piletska, A. P. F. Turner, P. J. Warner P. J., Sergeyeva T. A., Brovko O. O., Elska G. V. Porous molecularly-imprinted polymer membranes Publ. 13.07.2002.
[107] Sergeeva TA, Piletsky SA, Piletska EV, Brovko OO, Sergeeva LM, El'skaya AV. Synthesis of matrix polymeric membranes for solid-phase extraction of triazine herbicides from aqueous solutions and their study. Dopovidi Nats Akad Nauk Ukrainy. 2003; (6):170–5.
[108] Sergeyeva T. A., Piletsky S. A., Piletska E. V., Brovko O. O., Karabanova L. V., Sergeeva L. M., Turner A. P. F., E'lskaya A. V. In situ formation of porous molecularly imprinted polymer membranes Macromolecules 2003 36, N 19 P. 7352–7357.
[109] Sergeyeva T. A., Brovko O. O., Piletska E. V., Piletsky S. A., Goncharova L. A., Karabanova L. V., Sergeeva L. M., E'lskaya A. V. Porous molecularly imprinted polymer membranes and polymeric particles Anal. Chim. Acta 2007 582, N 2:311–319.
[110] Sergeyeva T. A., Piletska O. V., Piletsky S. A., Sergeeva L. M., Brovko O. O., E'lska G. V. Data on structure and recognition properties of template-selective binding sites in semi- IPN-based molecularly imprinted polymer membranes Mater. Sci. and Eng. C 2008 28, N 8:1482–1479.
[111] Sergeyeva T. A., Piletska O. V., Brovko O. O., Goncharova L. A., Piletsky S. A., El'ska G. V. Aflatoxin-selective molecularly imprinted polymer membranes based on acrylate-polyurethane semi-interpenetrating polymer networks. Ukr Biokhim Zh. 2007; 79(5):109–115.
[112] Sergeyeva T. A., Piletska O. V., Goncharova L. A., Brovko O. O., Piletsky S. A., El'ska G. V. Sensor system based on molecularly imprinted polymer membranes for selective recognition of aflatoxin B1. Ukr Biokhim Zh. 2008; 80(3):84–93.
[113] Brovko O. O., Sergeyeva T. A., Goncharova L. A., Shtompel V. I., Kochetov O. O., Sergeeva L. M., Elska G. V. Structure and properties of polymer membranes based on semi-interpenetrating polymer networks. Ukr. Khim. Zhur. 2006; 22(7):42–47.
[114] Karabanova L. V., Brovko O. O., Sergeyeva T. A., Lutsyk O. D., Goncharova L. A., Kochetov O. O. Structural and morphological special features of molecularly imprinted polymer membranes synthesized according to the IPN principle. Polymernyi Zhur. 2008; 30(2):111–115.
[115] Karabanova L. V., Brovko O. O., Sergeyeva T. A., Goncharova L. A., Lutsyk O. D. Thermodynamics of interactions between polymer components during synthesis of toxin-selective molecularly imprinted polymer membranes, synthesized according to the IPN principle. Polymernyi Zhur. 2009; 31(1):162–169.
[116] Goncharova L. A., Brovko O. O., Shtompel V. I., Sergeyeva T. A., Karabanova L. V., Sergeyeva L. M., Kochetov O. O., Svyatina A. V. Microporous films based on polyurethane-polyurethaneacrylate semi-interpenetrating polymer networks. Polymernyi Zhur. 2007; 29(4):271–280.
[117] Eur. Pat. EP 1244516A1. Verfahren zur herstellung templatgepragter materialien mit honer bindungspezifitat und selektivitat und ihre verwendung. M. Ulbricht, T. A. Sergeyeva, H. Matuschewski, U. Schedler, S. A. Piletsky Publ. 01.12.2000.
[118] Sergeyeva T. A., Matuschewski H., Piletsky S. A., Bendig J., Schedler U., Ulbricht M. Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting technique J. Chromatogr. A 2001 907, N 1–2:89–99.
[119] Sergeyeva T. A., Matuschewski H., Piletsky S. A., Shedler U., Ulbricht M. Development of molecularly imprinted polymer membranes with specificity to triazine herbicides prepared by the «surface photo-grafting technique». Biopolym Cell. 2004; 20(4):307–314.
[120] Matuschewski H., Sergeyeva T. A., Bendig J., Piletsky S. A., Ulbricht M., Shedler U. Surface engineering: molecularly imprinted affinity membranes by photograft polymerization Proc. SPIE 2001 4205:65–74.
[121] Yallow R. S., Berson S. A. Assay of plasma insulin in human subjects by immunological methods Nature 1959 184, N 4699:1648–1649.
[122] Gonzalez-Martinez M. A., Puchades R., Maquieira A. On-line immunoanalysis for environmental pollutants: from batch assays to automated sensors TrAC Trends Anal. Chem 1999 18, N 3:204–218.
[123] Degelau A., Freitag R., Linz F., Middendorf C., Scheper T., Bley T., Muller S., Stoll P., Reardon K. F. Immunoand flow cytometric analytical methods for biotechnological research and process monitoring J. Biotechnol 1992 25, N 1–2 P. 115–144.
[124] Franek M., Hruska K. Antibody based methods for environmental and food analysis: a review Veterin. Med Czech. 2005; 50(1):1–10.
[125] Vlatakis G., Andersson L. I., Muller R., Mosbach K. Drug assay using antibody mimics made by molecular imprinting Nature 1993 361, N 6413:645–647.
[126] Andersson L. I., Muller R., Vlatakis G., Mosbach K. Mimics of the binding sites of opiod receptors obtained by molecular imprinting of enkephalin and morphine Proc. Nat. Acad. Sci. USA 1995 92, N 11:4788–4792.
[127] Yilmaz E., Mosbach K., Haupt K. Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays Anal. Communs 1999 36, N 5:167–170.
[128] Andersson L. I. Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assays for (S)-propranolol Anal. Chem 1996 68, N 1:111–117.
[129] Muldoon M. T., Stanker L. H. Polymer synthesis and characterization of a molecularly imprinted sorbent assay for atrazine J. Agric. Food. Chem 1995 43, N 6:1424–1427.
[130] Siemann M., Andersson L., Mosbach K. Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers J. Agric. Food. Chem 1996 44, N 1 P. 141–145.
[131] Ye L., Cormack P. A. G., Mosbach K. Molecularly imprinted monodisperse microspheres for competitive radioassay Anal. Communs 1999 36, N 2:35–38.
[132] Ramstrom O., Ye L., Mosbach K. Artificial antibodies to corticosteroids prepared by molecular imprinting Chem. Biol 1996 3, N 6:471–477.
[133] Urraca J. L., Moreno-Bondi M. C., Orellana G., Sellergren B., Hall A. J. Molecularly imprinted polymers as antibody mimics in automated on-line fluorescent competitive assays Anal. Chem 2007 79, N 13:4915–4923.
[134] Benito-Pena E., Moreno-Bondi M. C., Aparicio S., Orellana G., Cederfur J., Kempe M. Molecular engineering of fluorescent penicillins for molecularly imprinted polymer assays Anal. Chem 2006 78, N 6:2019–2027.
[135] Haupt K., Dzgoev A., Mosbach K. Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element Anal. Chem 1998 70, N 3:628–631.
[136] Lu C.-H., Zhou W.-H., Han B., Yang H.-H., Chen X., Wang X.-R. Surface-imprinted core-shell nanoparticles for sorbent assays Anal. Chem 2007 79, N 14:5457–5461.
[137] Haupt K. Noncovalent molecular imprinting of a synthetic polymer with the herbicide 2,4-dichlorophenoxyacetic acid in the presence of polar protic solvents ACS Symp. Ser 1998 703:135–142.
[138] Shi H. Q., Tsai W. B., Garisson M. D., Ferrari S., Ratner B. D. Template-imprinted nanostructured surfaces for protein recognition Nature 1999 398, N 6728:593–597.
[139] Shi H. Q., Ratner B. D. Template recognition of protein-imprinted polymer surfaces J. Biomed. Mater. Res 2000 49, N 1:1–11.
[140] Surugiu I., Ye L., Yilmaz E., Dzgoev A., Danielsson B., Mosbach K., Haupt K. An enzyme-linked molecularly imprinted sorbent assay Analyst 2000 125, N 1:13–16.
[141] Surugiu I., Danielsson B., Ye L., Mosbach K., Haupt K. Chemiluminescence imaging ELISA using, instead of an antibody, an imprinted polymer as the recognition element Anal. Chem 2001 73, N 3:487–491.
[142] Surugiu I., Svitel J., Ye L., Haupt K., Danielsson B. Development of a flow injection capillary chemiluminescent ELISA using an imprinted polymer instead of the antibody Anal. Chem 2001 73, N 17:4388–4392.
[143] Piletsky S. A., Piletska E. V., Chen B., Karim K., Weston D., Barret G., Lowe P., Turner A. P. F. Chemical grafting of molecularly imprinted homopolymers to the surface of microplates. Application of artificial adrenergic receptor in enzyme- linked assay for ?-agonists determination Anal. Chem 2000 72, N 18:4381–4385.
[144] Piletsky S. A., Piletska E. V., Bossi A., Karim K., Lowe P., Turner A. P. F. Substitution of antibodies and receptors with molecularly imprinted polymers in enzyme-linked and fluorescent assays Biosensors and Bioelectronics 2001 16, N 9:701–707.
[145] Nicholls C., Karim K., Piletsky S., Saini S., Setford S. Displacement imprinted polymer receptor analysis (DIPRA) for chlorophenolic contaminants in drinking water and packaging materials Biosensors and Bioelectronics 2006 21, N 7:1171–1177.
[146] Pat. of Germany, DE 198 32 598 C2. Oberflachenmodifizierung von mikrotiterplatten mit pHund/oder redoxsensitiven und/or molecular gepragten polymeren sowie die verwendung solcher modifizierter mikrotiterplatten in assays bzw. Testund screeningsystemen. S. A. Piletsky, M. Ulbricht, U. Shedler, O. V. Piletska, T. L. Panasyuk, T. A. Sergeyeva, G. V. E'lska Publ. 09.07.1998.
[147] Piletsky S. A., Piletskaya E. V., Yano K., Kugimiya A., Elgersma A. V., Levi R., Kahlow U., Takeuchi T., Karube I., Panasyuk T. L., E'lskaya A. V. A biomimetic receptor system for sialic acid based on molecular imprinting Anal. Lett 1996 29, N 2:157–170.
[148] Wang W., Gao S. H., Wang B. H. Building fluorescent sensors by template polymerization: the preparation of a fluorescent sensor for D-fructose Org. Lett 1999 1, N 8:1209– 1212.
[149] Turkewitsch P., Wandelt B., Darling C. D., Powell W. S. Fluorescent functional recognition sites through molecular imprinting. A polymer-based fluorescent chemosensor for aqueous cAMP Anal. Chem 1998 70, N 10:2025–2030.
[150] Wandelta B., Mielniczaka A., Turkewitsch P., Wysocki S. Steady- state and time-resolved fluorescence studies of fluorescent imprinted polymers J. Lumines 2003 102–103 (Special) :774–781.
[151] Rathbone D. L., Su D., Wang Y., Billington D. C. Molecular recognition by fluorescent imprinted polymers Tetrahedron Lett 2000 41, N 1:123–126.
[152] Rathbone D. L., Ge Y. Selectivity of response in fluorescent polymers imprinted with N1-benzylidene pyridine-2-carboxamidrazones Anal. Chim. Acta 2001 435, N 1:129– 136.
[153] Malitesta C., Losito I., Zambonin P. G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors Anal. Chem 1999 71, N 7:1366–1370.
[154] Dickert F. L., Tortschanoff M., Bulst W. E., Fischerauer G. Molecularly imprinted sensor layers for the detection of polycyclic aromatic hydrocarbons in water Anal. Chem 1999 71, N 20:4559–4563.
[155] Dickert F. L., Forth P., Lieberzeit P., Tortschanoff M. Molecular imprinting in chemical sensing – Detection of aromatic and halogenated hydrocarbons as well as polar solvent vapors Fresenius J. Anal. Chem 1998 360, N 7–8:759–762.
[156] Dickert F. L., Forth P. Lieberzeit P. A. Voigt G. Quality control of automotive engine oils with mass-sensitive chemical sensors: QCMs and molecularly imprinted polymers Fresenius J. Anal. Chem 2000 366, N 8:802–806.
[157] Dickert F. L., Thierer S. Molecularly imprinted polymers for optochemical sensors Avd. Mater 1996 8, N 12:987– 990.
[158] Haupt K., Noworyta K., Kutner W. Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance Anal. Communs 1999 36, N 11–12:391– 393.
[159] Ji H.-S., McNiven S., Ikebukuro K., Karube I. Selective piezoelectric odor sensors using molecularly imprinted polymers Anal. Chim. Acta 1999 390, N 1–3:93–100.
[160] Ji H.-S., McNiven S., Lee K. H., Saito T., Ikebukuro K., Karube I. Increasing the sensitivity of piezoelectric odour sensors based on molecularly imprinted polymers Biosensors and Bioelectronics 2000 15, N 7–8:403–409.
[161] Liang C., Peng H., Bao X., Nie L., Yao S. Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine Analyst 1999 124, N 12:1781–1785.
[162] Liao H., Zhang Z., Nie L., Yao S. Electrosynthesis of imprinted polyacrylamide membranes for the stereospecific L-histidine sensor and its characterization by AC impedance spectroscopy and piezoelectric quartz crystal technique J. Biochem. Biophys. Meth 2004 59, N 1:75–87.
[163] Jakoby B., Ismail G. M., Byfield M. P., Vellekoop M. J. A novel molecularly imprinted thin film applied to a Love wave gas sensor Sensors and Actuators 1999 76, N 1–3 P. 93–97.
[164] Panasyuk-Delaney T., Mirsky V., Sergeyeva T., Wolfbeis O. Impedometric chemosensors based on thin film polymers: Proc. of the 7th Int. Workshop on Appl. Phys. of Condensed Matter. (17–19 September, 2001) Demanovska Dolina, 2001:199–202.
[165] Zayats M., Lahav M., Kharitonov A. B., Willner I. Imprinting of specific molecular recognition sites in inorganic and organic thin layer membranes associated with ion-sensitive fieldeffect transistors Tetrahedron 2002 58, N 4:815– 824.
[166] Panasyuk-Delaney T., Mirsky V. M., Ulbricht M., Wolfbeis O. S. Impedometric herbicide chemosensors based on molecularly imprinted polymers Anal. Chim. Acta 2001 435, N 1:157–162.
[167] Panasyuk-Delaney T., Mirsky V. M., Wolfbeis O. S. Capacitive creatinine sensor based on a photografted molecularly imprinted polymer Electroanalysis 2002 14, N 3 P. 221–227.
[168] Sergeyeva T. A., Panasyuk-Delaney T. L., Piletska O. V., Piletsky S. A., El'ska G. V. Development of a capasitive sensor for environmental monitoring based on molecularly imprinted polymer thin films. Computational modeling for optimization of composition of synthetic mimicks of bioreceptors. Ukr. Biokhim. Zh. 2006; 78(2):121–130.
[169] Kriz D., Ramstrom O., Svensson A., Mosbach K. A biomimetic sensor based on a molecularly imprinted polymer as a recognition element combined with fiber-optic detection Anal. Chem 1995 67, N 13:2142–2144.
[170] Suarez-Rodriguez J. L., Diaz-Garcia M. E. Flavonol fluorescent flow-through sensing based on a molecular imprinted polymer Anal. Chim. Acta 2000 405, N 1–2:67–76.
[171] Kriz D., Mosbach K. Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer Anal. Chim. Acta 1995 300, N 1–3:71– 75.
[172] Haupt K., Mayes A. G., Mosbach K. Herbicide assay using an imprinted polymer-based system analogous to competitive fluoroimmunoassays Anal. Chem 1998 70, N 18 P. 3936–3939.
[173] Levi R., McNiven S., Piletsky S. A., Cheong S.-H., Yano K., Karube I. Optical detection of chloramphenicol using molecularly imprinted polymers Anal. Chem 1997 69, N 11 P. 2017–2021.
[174] Haupt K. Molecularly imprinted sorbent assays and the use of non-related probes React. Funct. Polym 1999 41, N 1 P. 125–131.
[175] Piletsky S. A., Terpetschnik E., Andersson H. S., Nicholls I. A., Wolfbeis O. S. Application of non-specific fluorescent dyes for monitoring enantio-selective ligand binding to molecularly imprinted polymers Fresenius J. Anal. Chem 1999 364, N 6:512–516.
[176] Matsui J., Higashi M., Takeuchi T. Molecularly imprinted polymer as 9-ethyladenine receptor having a porphyrin-based recognition center J. Amer. Chem. Soc 2000 122, N 21 P. 5218–5219.
[177] Shughart E. L., Ahsan K., Detty M. R., Bright F. V. Site selectively templated and tagged xerogels for chemical sensors Anal. Chem 2006 78, N 9:3165–3170.
[178] Kubo H., Yoshioka N., Takeuchi T. Fluorescent imprinted polymers prepared with 2-acrylamidoquinoline as a signaling monomer Org. Lett 2005 7, N 3:359–362.
[179] Manesiotis P., Hall A. J., Sellergren B. Improved imide receptors by imprinting using pyrimidine-based fluorescent reporter monomers J. Org. Chem 2005 70, N 7:2729– 2738.
[180] Li J., Kendig C. E., Nesterov E. E. Chemosensory performance of molecularly imprinted fluorescent conjugated polymer materials J. Amer. Chem. Soc 2007 129, N 51 P. 15911–15918.
[181] Sergeyeva T. A., Piletsky S. A., Brovko A. A., Slinchenko E. A., Sergeeva L. M., Panasyuk T. L., E'lskaya A. V. Conductometric sensor for atrazine detection based on molecularly imprinted polymer membranes Analyst 1999 124, N 3 P. 331–335.
[182] Sergeyeva T. A., Piletsky S. A., Brovko A. A., Slinchenko E. A., Sergeeva L. M., E'lskaya A. V. Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection Anal. Chim. Acta 1999 392, N 2–3:105–111.
[183] Yamazaki T., Meng Z., Mosbach K., Sode K. A Novel amperomet ric sensor for organophosphotriester insecticides detection employing catalytic polymer mimicking phosphotriesterase catalytic center. Electrochemistry. 2001; 69(12):969–972.
[184] Hutchins R. S., Bachas L. G. Nitrate-selective electrode developed by electrochemically mediated imprinting/doping of polypyrrole Anal. Chem 1995 67, N 10:1654–1660.
[185] Andersson L. I., Miyabayashi A., O'Shannessy D. J., Mosbach K. Enantiomeric resolution of amino acid derivatives on molecularly imprinted polymers as monitored by potentiometric measurements J. Chromatogr. A 1990 516, N 2 P. 323–331.
[186] Hedborg E., Winquist F., Lundstrom I., Andersson L. I., Mosbach K. Some studies of molecularly-imprinted polymer membranes in combination with field-effect devices Sensors and Actuators A 1993 37–38:796–799.
[187] Piletsky S. A., Piletskaya E. V., Elgersma A. V., Yano K., Karube I., Parhometz Y. P., Elskaya A. V. Atrazine sensing by molecularly imprinted membranes Biosensors and Bioelectronics 1995 10, N 9–10:959–964.
[188] Panasyuk T., Mirsky V. M., Piletsky S. A., Wolfbeis O. S. Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors Anal. Chem 1999 71, N 20:4609–4613.