Biopolym. Cell. 2013; 29(2):150-156.
Біоорганічна хімія
Антивірусні властивості рослинних флавоноїдів – інгібіторів синтезу ДНК і РНК
1Пальчиковська Л. Г., 1Васильченко О. В., 1Платонов М. О., 2Старосила Д. Б., 2Порва Ю. І., 1Римар С. Ю., 2Атаманюк В. П., 1Самійленко С. П., 2Рибалко С. Л.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680
  2. ДУ «Інститут епідеміології та інфекційних хвороб ім. Л. В. Громашевського АМН України»
    вул. Амосова, 5, Київ, Україна, 03038

Abstract

Мета. Дослідити вплив рослинного екстракту (РЕ) щучки дернистої (Deschampsia caespitosa L.) і війника наземного (Calamagrostis epigeios L.) та його компонентів – похідних кверцетину – на синтез ДНК і РНК, а також порівняти їхні антивірусні властивості. Методи. Тест-системи: модельна транскрип- ційнa система бактеріофага Т7 (РНКП Т7), полімеразна ланцюгова реакція (ПЛР); моделі грипозної і герпетичної інфекцій та модель вірусу гепатиту С. Результати. Встановлено, що РЕ, його мажорний (7, 3'-диметоксикверцетин, ДМК) і мінорний (5,7,3',4'-тетраметоксикверцетин, ТМК) компоненти ефективно інгібують синтез РНК у системі РНКП Т7 із значеннями ІС50 0,07; 4 і 1 мкг/мл відповідно. Згадані агенти повністю пригнічують ПЛР: відповідні величини ІС90 становлять 8, 30 і 40 мкг/мл для РЕ, ТМК і ДМК. Усі досліджені препарати виявляють високу множинну антивірусну активність проти вірусів РНК і ДНК. Висновки. Противірусна активність РЕ, вірогідно, зумовлена сукупною дією його компонентів, у тому числі ТМК і ДМК. Зважаючи на багатомішенний профіль останніх, можна припустити. що механізм противірусної дії досліджуваних агентів визначається, серед іншого, блокуванням вірусних ферментативних систем синтезу РНК і ДНК.
Keywords: рослинні похідні кверцетину, інгібітори синтезу РНК і ДНК, антивірусні властивості

References

[1] Formica J. V., Regelson W. Review of the biology of quercetin and related bioflavonoids Food Chem. Toxicol 1995 33, N 12:1061–1080.
[2] Havsteen B. H. The biochemistry and medical significance of flavonoids Pharmac. Ther 2002 96, N 2–3:67–202.
[3] Saija A., Scalese M., Lanza M., Marzullo D., Bonina F., Castelli F. Flavonoids as antioxidant agents: importance of their interaction with biomembranes Free Radic. Biol. Med 1995 19, N 4:481–486.
[4] Miller A. L. Antioxidant flavonoids: structure, function and clinical usage Alt. Med. Rev 1996 1, N 2:103–111.
[5] Chang W. S., Lee Y. J., Lu F. J., Chiang H. C. Inhibitory effects of flavonoids on xanthine oxidase Anticancer Res 1993 13, N 6A:2165–2170
[6] Kim H. P., Mani I., Iversen L., Ziboh V. A. Effects of naturallyoccurring flavonoids and biflavonoids on epidermal cyclooxygenase from guinea pigs Prostaglandins Leukot. Essent. Fatty Acids 1998 58, N 1:17–24.
[7] Chaudhry P. S., Cabrera J., Juliani H. R., Varma S. D. Inhibition of human lens aldose reductase by flavonoids, sulindac, and indomethacin Biochem. Pharmacol 1983 32, N 13:1995–1998.
[8] Ono K., Nakane H., Fukushima M., Chermann J. C., Barre-Sinoussi F. Differential inhibitory effects of various flavonoids on the activities of reverse transcriptase and cellular DNA and RNA polymerases Eur. J. Biochem 1990 190, N 3 :469–476.
[9] Ng T. B., Huang B., Fong W. P., Yeung H. W. Anti-human immunodeficiency virus (anti-HIV) natural products with special emphasis on HIV reverse transcriptase inhibitors Life Sci 1997 61, N 10;933–949.
[10] Ono K., Nakane H. Mechanisms of inhibition of various cellular DNA and RNA polymerases by several flavonoids J. Biochem 1990 108, N 4:609–613.
[11] Palchykovska L. G., Alexeeva I. V., Kostina V. G., Platonov M. O., Negrutska V. V., Deriabin O. M., Tarasov O. A., Shved A. D. New amides of phenazine-1-carboxylic acid: antimicrobial activity and structure-activity relationship Ukr. Biokhim. Zh 2008 80, N 3:140–147.
[12] PCR: BIOS Essential techniques / Ed. J. F. Burke New York: John Wiley & Sons, 1996 153 p.
[13] Palchykovska L. G., Vasylchenko O. V., Platonov M. O., Kostina V. G., Lysenko N. A., Alexeeva I. V., Hovorun D. M., Shved A. D. Design of transcription inhibitors on the basis of N-arylamides of 9-methyland 9-methoxyphenazine-1-carboxylic acids Ukr. Biokhim. Zh 2011 83, N 2 P. 65–73.
[14] McMartin C., Bohacek R. S. QXP: Powerful, rapid computer algorithms for structure-based drug design J. Comput. Aided Mol. Des 1997 11, N 4 P. 333–344.
[15] Temiakov D., Patlan V., Anikin M., McAllister W. T., Yokoyama S., Vassylyev D. G. Structural basis for substrate by T7 RNA polymerase Cell 2004 116, N 3: 381–391.
[16] Porva J. I., Rybalko S. L., Dyadyun S. T., Zavelevich M. P., Borovikov V. M., Starosila D. B., Alekseenko I. P., Derjabin O. N. Cultivating of hepatitis C virus in transfected cell cultures Laboratory Diagnostics 2010 51, N 1 P. 20–23.
[17] Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA Virology 1973 52, N 2; 456–467.
[18] Uesugi M. Synthetic molecules that modulate transcription and differentiation: hints for future drug discovery Comb. Chem. High Throughput Screen 2004 7, N 7:653–659.
[19] Delarue M., Poch O., Tordo N., Moras D., Argos P. An attempt to unify the structure of polymerases Protein Eng 1990 3, N 6 :461–467.
[20] Tunitskaya V. L., Kochetkov S. N. Structural-functional analysis of bacteriophage T7 RNA polymerase Biochemistry (Mosc) 2002 67, N 10:1124–1135.
[21] Stankiewicz-Drogon A., Palchykovska L. G., Kostina V. G., Alexeeva I. V., Shved A. D., Boguszewska-Chachulska A. M. New acridone-4-carboxylic acid derivatives as potential inhibitors of hepatitis C virus infection Bioorg. Med. Chem 2008 16, N 19:8846–8852.
[22] Palchykovska L. G., Alexeeva I. V., Platonov M. O., Kostenko O. M., Usenko L. S., Negrutska V. V., Shved A. D. New 1,2,4-triazine bearing compounds: molecular modelling, synthesis and biotesting Biopolym. Cell 2009 25, N 6:491–499.
[23] De Logu A., Palchykovska L. H., Kostina V. H., Sanna A., Meleddu R., Chisu L., Alexeeva I. V., Shved A. D. Novel N-aryland Nheteryl phenazine-1-carboxamides as potential agents for the treatment of infections sustained by drug-resistant and multidrug-resistant Mycobacterium tuberculosis Int. J. Antimicrob. Agents 2009 33, N 3; 223–229.
[24] Hotta K., Zhu C. B., Phomsuwansiri P., Ishikawa J., Mizuno S., Hatsu M., Imai S. PCR inhibition assay for DNA-targeted antibiotics J. Antibiot. (Tokyo) 1995 48, N 11: 1267–1272.