Biopolym. Cell. 2015; 31(2):146-153.
Біоорганічна хімія
Вплив кріопротекторів групи оксиетильованих похідних гліцерину на фазові переходи модельних мембран на основі ДПФХ
1Касян Н. О., 1Краснікова А. О., 1Ващенко О. В., 1Лисецький Л. М., 2Зінченко О. В., 2Компанієць А. М., 3Ратушна М. В.
  1. Інститут сцинтиляційних материалів НАН України
    Пр. Леніна, 60, Харків, Україна, 61001
  2. Інститут проблем кріобіології і кріомедицини НАН України
    23, Переяслівська вул., Харків, Україна, 61015
  3. ДУ «Інститут неврології, психіатрії та наркології, НАМН України»
    вул. Академіка Павлова, 46, Харків, Україна, 61068

Abstract

Мета. Встановлення впливу кріопротекторів групи оксиетильованих похідних гліцерину (ОЕГn) зі ступенями полімеризації n = 5, 25 и 30 на фазові стани та фазові переходи модельних ліпідних мембран на основі ДПФХ. Методи. Диференціальна скануюча калориметрія. Результати. Досліджено модельні ліпідні мембрани на субфазі вода/ОЕГn та вода/гліцерин із варіюванням концентрації кріопротектору від 0 до ~100 мас. %. Зі збільшенням концентрації ОЕГn суттєво зростають температури передпереходу та плавлення модельної мембрани, при цьому пік плавлення зберігається до 100 мас. % ОЕГn. Для ОЕГn=5 віднайдено значне зростання ентальпії плавлення мембрани. Висновки. Сольватуюча здатність субфази, що оцінена по зниженню температури плавлення сухого ДПФХ, знижується у низці вода > гліцерин > ОЕГn=5 ОЕГn=25 ОЕГn=30, що корелює зі зменшенням питомої кількості груп, що ефективно беруть участь у сольватації.
Keywords: модельні ліпідні мембрани, оксиетильовані похідні гліцерину, фазові переходи, сольватація

References

[1] Pignatello R, Musumeci T, Basile L, Carbone C, Puglisi G. Biomembrane models and drug-biomembrane interaction studies: Involvement in drug design and development. J Pharm Bioallied Sci. 2011;3(1):4-14.
[2] Peetla C, Stine A, Labhasetwar V. Biophysical interactions with model lipid membranes: applications in drug discovery and drug delivery. Mol Pharm. 2009;6(5):1264-76.
[3] Seydel JK, Wiese M. Drug-membrane interactions: analysis, drug distribution, Modeling. Wiley-VCH Verlag GmbH, Weinheim, 2002, 349 p
[4] Nardid OA. Study of low-molecular effect of cryoprotectants on mitochondria respiratory chain by spin probe EPR. Problems of Cryobiology and Cryomedicine. 2009; 19(2):177-85.
[5] Anchordoguy TJ, Rudolph AS, Carpenter JF, Crowe JH. Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology. 1987;24(4):324-31.
[6] Kiselev MA, Lesieur P, Kisselev AM, Ollivon M. Ice formation in model biological membranes in the presence of cryoprotectants. Nucl Instrum Methods Phys Res A. 2000; 448(1-2): 225-60.
[7] Korniyenko YeM, Posokhov YeO, Localization of penetrating cryoprotectant dimethylsulfoxide in red cell membranes: a study by fluorescent probes. The Journal of V. N. Karazin Kharkiv National University. Ser: Biol. 2011; 14(971):135-9.
[8] Notman R, Noro M, O'Malley B, Anwar J. Molecular basis for dimethylsulfoxide (DMSO) action on lipid membranes. J Am Chem Soc. 2006;128(43):13982-3.
[9] Gurtovenko AA, Anwar J. Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J Phys Chem B. 2007;111(35):10453-60.
[10] Gorshkova YuE, Ivankov OI, Kuklin AI, Gordeliy VI. Investigation of DESO/LIPID membranes interaction by X-Ray scattering. J Phys: Conf Ser. 2012; 351:012006.
[11] Westh P. Unilamellar DMPC vesicles in aqueous glycerol: preferential interactions and thermochemistry. Biophys J. 2003;84(1):341-9.
[12] McDaniel RV, McIntosh TJ, Simon SA. Nonelectrolyte substitution for water in phosphatidylcholine bilayers. Biochim Biophys Acta. 1983; 731(1):97-108.
[13] Konov KB, Isaev NP, Dzubab SA. Glycerol penetration profile in phospholipid bilayers measured by ESEEM of spin-labelled lipids. Molecular Physics. 2013;111(18-19):2882-6.
[14] Szmant HH. Physical properties of dimethyl sulfoxide and its function in biological systems. Ann N Y Acad Sci. 1975;243:20-3.
[15] Nowacka A, Douezan S, Wads L, Topgaard D, Sparr E. Small polar molecules like glycerol and urea can preserve the fluidity of lipid bilayers under dry conditions. Soft Matter. 2012; 8: 1482-91.
[16] Crowe JH, Crowe LM, Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984;223(4637):701-3.
[17] Oliver AE, Crowe LM, Crowe JH. Methods for dehydration-tolerance: depression of the phase transition temperature in dry membranes and carbohydrate vitrification. Seed Sci. Res. 1998;8(2):211-21.
[18] Crowe JH, Crowe LM, Hoekstra FA. Phase transitions and permeability changes in dry membranes during rehydration. J Bioenerg Biomembr. 1989;21(1):77-91.
[19] Crowe LM, Crowe JH, Chapman D. Interaction of carbohydrates with dry dipalmitoylphosphatidylcholine. Arch Biochem Biophys. 1985;236(1):289-96.
[20] Mavromoustakos T, Chatzigeorgiou P, Koukoulitsa C, Dur­da­gi S. Partial interdigitation of lipid bilayers. Int J Quantum Chem. 2011; 111(6):1172–83.
[21] Veiro JA, Nambi P, Herold LL, Rowe ES. Effect of n-alcohols and glycerol on the pretransition of dipalmitoylphosphatidylcholine. Biochim Biophys Acta. 1987;900(2):230-8.
[22] Swamy MJ, Marsh D. Thermodynamics of interdigitated phases of phosphatidylcholine in glycerol. Biophys J. 1995;69(4):1402-8.
[23] O’Leary TJ, Levin IW. Raman spectroscopic study of an interdigitated lipid bilayer dipalmitoylphosphatidylcholine dispersed in glycerol. Biochim Biophys Acta. 1984; 776(2):185-9.
[24] Zhivotova EN, Zinchenko AV, Kuleshova LG, Chekanova VV, Kompaniets AM. Physical states of aqueous solutions of oxyethylated glycerol with polymerization degree of n=30 at temperatures lower than 283 K. Cryo Letters. 2007;28(4):261-70.
[25] Dashnau JL, Nucci NV, Sharp KA, Vanderkooi JM. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J Phys Chem B. 2006;110(27):13670-7.
[26] Lubyanyi V, Bredikhina L, Shrago M. Cryoprotective activity of OEG oligomers in the red cell low temperature preservation. Kriobiologiya. 1981; 8:34–40.
[27] Pakhomova YS, Chekanova VV, Kompaniets AM. Cryoprotective properties of solutions based on non-penetrative OEGn=25 combined with penetrating cryoprotectants during freezing of human erythrocytes. Problems of Cryobiology and Cryomedicine. 2013; 23(1):26-39.
[28] Shrago MI, Guchok MM, Kalugin YuV. Some principles of direct synthesis of cryoprotectants. In: Current Problems of Cryobiology. Eds. Pushkar NS and Belous AM. Kiev: Naukova Dumka, 1981:157–201.
[29] Kompaniets AM, Chekanova VV, Nikolenko AV, Zinchenko AV, Pakhomova YS. Synthesis, physico-chemical and cryoprotectant properties of oxyethyl derivatives of alcohols. In: Actual problems of cryobiology and cryomedicine. Ed. Acad. Gol’tsev AN. Kharkov: Raider, 2012$73-100.
[30] Ivkov VG, Berestovskiy GN. Dynamic structure of lipid bilayer. Moscow: Nauka, 1981; 296 p.
[31] Wack DC, Webb WW. Synchrotron x-ray study of the lamellar phase P?' in the lecithin-water system. Phy. Rev A. 1989; 40(5):2712-30.